IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v175y2023ics1364032123000394.html
   My bibliography  Save this article

Prediction and innovation of sustainable continuous flow microwave processing based on numerical simulations: A systematic review

Author

Listed:
  • Yang, Huayu
  • Yan, Bowen
  • Chen, Wei
  • Fan, Daming

Abstract

Continuous-flow microwave heating is an emerging technology for processing liquid materials owing to its short residence time and relatively low environmental footprint. However, the uncertain transmission of microwaves makes it difficult to understand the energy input-absorption relationship using conventional experimental and theoretical methods, resulting in inefficient heating. Nevertheless, this limitation can be mitigated through numerical simulation methods. Numerical simulations can not only maintain a balance between energy conversion and heating uniformity but also help optimize reaction conditions and reactor design. The energy efficiency resulting from a resonator design can vary from 7% to 99%. Furthermore, the interference between flow paths affecting the thermal efficiency can be visualized via simulation models and scientifically optimized. The key challenge in numerical simulations is the development of models that accurately describe the reaction conditions under a microwave field. Addressing this constraint can help to design a reasonable microwave transmission method and efficiently predict the processing capability. This review introduces the concepts of numerical simulation methods and summarizes the continuous flow applications driven by these methods. Additionally, this study explains the current understanding of microwave-assisted liquid processing based on numerical simulations and emphasizes the challenges of instantaneous prediction modeling. The prospects of numerical simulations for liquid-processing development are presented.

Suggested Citation

  • Yang, Huayu & Yan, Bowen & Chen, Wei & Fan, Daming, 2023. "Prediction and innovation of sustainable continuous flow microwave processing based on numerical simulations: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
  • Handle: RePEc:eee:rensus:v:175:y:2023:i:c:s1364032123000394
    DOI: 10.1016/j.rser.2023.113183
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032123000394
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2023.113183?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. R, Gopi & Thangarasu, Vinoth & Vinayakaselvi M, Angkayarkan & Ramanathan, Anand, 2022. "A critical review of recent advancements in continuous flow reactors and prominent integrated microreactors for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    2. Wang, Wenlong & Zhao, Chao & Sun, Jing & Wang, Xiaolin & Zhao, Xiqiang & Mao, Yanpeng & Li, Xinning & Song, Zhanlong, 2015. "Quantitative measurement of energy utilization efficiency and study of influence factors in typical microwave heating process," Energy, Elsevier, vol. 87(C), pages 678-685.
    3. Luo, Juan & Sun, Shichang & Chen, Xing & Lin, Junhao & Ma, Rui & Zhang, Rui & Fang, Lin, 2021. "In-depth exploration of the energy utilization and pyrolysis mechanism of advanced continuous microwave pyrolysis," Applied Energy, Elsevier, vol. 292(C).
    4. Bucksteeg, Michael & Wiedmann, Michael & Pöstges, Arne & Haller, Markus & Böttger, Diana & Ruhnau, Oliver & Schmitz, Richard, 2022. "The transformation of integrated electricity and heat systems—Assessing mid-term policies using a model comparison approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    5. Zhang, Yaning & Ke, Cunfeng & Fu, Wenming & Cui, Yunlei & Rehan, Mirza Abdullah & Li, Bingxi, 2020. "Simulation of microwave-assisted gasification of biomass: A review," Renewable Energy, Elsevier, vol. 154(C), pages 488-496.
    6. Li, Zhi & Lu, Yiji & Huang, Rui & Chang, Jinwei & Yu, Xiaonan & Jiang, Ruicheng & Yu, Xiaoli & Roskilly, Anthony Paul, 2021. "Applications and technological challenges for heat recovery, storage and utilisation with latent thermal energy storage," Applied Energy, Elsevier, vol. 283(C).
    7. Bloess, Andreas, 2019. "Impacts of heat sector transformation on Germany’s power system through increased use of power-to-heat," Applied Energy, Elsevier, vol. 239(C), pages 560-580.
    8. Ocreto, Jherwin B. & Chen, Wei-Hsin & Ubando, Aristotle T. & Park, Young-Kwon & Sharma, Amit Kumar & Ashokkumar, Veeramuthu & Ok, Yong Sik & Kwon, Eilhann E. & Rollon, Analiza P. & De Luna, Mark Danie, 2021. "A critical review on second- and third-generation bioethanol production using microwaved-assisted heating (MAH) pretreatment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    9. Yeong, S.P. & Law, M.C. & You, K.Y. & Chan, Y.S. & Lee, V.C.-C., 2019. "A coupled electromagnetic-thermal-fluid-kinetic model for microwave-assisted production of Palm Fatty Acid Distillate biodiesel," Applied Energy, Elsevier, vol. 237(C), pages 457-475.
    10. Ge, Shengbo & Yek, Peter Nai Yuh & Cheng, Yoke Wang & Xia, Changlei & Wan Mahari, Wan Adibah & Liew, Rock Keey & Peng, Wanxi & Yuan, Tong-Qi & Tabatabaei, Meisam & Aghbashlo, Mortaza & Sonne, Christia, 2021. "Progress in microwave pyrolysis conversion of agricultural waste to value-added biofuels: A batch to continuous approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    11. Asomaning, Justice & Haupt, Susan & Chae, Michael & Bressler, David C., 2018. "Recent developments in microwave-assisted thermal conversion of biomass for fuels and chemicals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 92(C), pages 642-657.
    12. Siddique, Istiaq Jamil & Salema, Arshad Adam & Antunes, Elsa & Vinu, Ravikrishnan, 2022. "Technical challenges in scaling up the microwave technology for biomass processing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    13. Yang, Huayu & Zhang, Yuhao & Gao, Wenhua & Yan, Bowen & Zhao, Jianxin & Zhang, Hao & Chen, Wei & Fan, Daming, 2021. "Steam replacement strategy using microwave resonance: A future system for continuous-flow heating applications," Applied Energy, Elsevier, vol. 283(C).
    14. Jiaqiang, E & Zhao, Xiaohuan & Xie, Longfu & Zhang, Bin & Chen, Jingwei & Zuo, Qingsong & Han, Dandan & Hu, Wenyu & Zhang, Zhiqing, 2019. "Performance enhancement of microwave assisted regeneration in a wall-flow diesel particulate filter based on field synergy theory," Energy, Elsevier, vol. 169(C), pages 719-729.
    15. Seck, Gondia Sokhna & Guerassimoff, Gilles & Maïzi, Nadia, 2015. "Heat recovery using heat pumps in non-energy intensive industry: Are Energy Saving Certificates a solution for the food and drink industry in France?," Applied Energy, Elsevier, vol. 156(C), pages 374-389.
    16. Angelo Montenegro & Chayan Dutta & Muhammet Mammetkuliev & Haotian Shi & Bingya Hou & Dhritiman Bhattacharyya & Bofan Zhao & Stephen B. Cronin & Alexander V. Benderskii, 2021. "Asymmetric response of interfacial water to applied electric fields," Nature, Nature, vol. 594(7861), pages 62-65, June.
    17. Wan Mahari, Wan Adibah & Kee, Seng Hon & Foong, Shin Ying & Amelia, Tan Suet May & Bhubalan, Kesaven & Man, Mustafa & Yang, YaFeng & Ong, Hwai Chyuan & Vithanage, Meththika & Lam, Su Shiung & Sonne, C, 2022. "Generating alternative fuel and bioplastics from medical plastic waste and waste frying oil using microwave co-pyrolysis combined with microbial fermentation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    18. Owen Sedej & Eric Mbonimpa & Trevor Sleight & Jeremy Slagley, 2022. "Application of Machine Learning to Predict the Performance of an EMIPG Reactor Using Data from Numerical Simulations," Energies, MDPI, vol. 15(7), pages 1-22, March.
    19. Falciglia, Pietro P. & Roccaro, Paolo & Bonanno, Lorenzo & De Guidi, Guido & Vagliasindi, Federico G.A. & Romano, Stefano, 2018. "A review on the microwave heating as a sustainable technique for environmental remediation/detoxification applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 147-170.
    20. Li, Hong & Zhao, Zhenyu & Xiouras, Christos & Stefanidis, Georgios D. & Li, Xingang & Gao, Xin, 2019. "Fundamentals and applications of microwave heating to chemicals separation processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    21. Sovacool, Benjamin K. & Bazilian, Morgan & Griffiths, Steve & Kim, Jinsoo & Foley, Aoife & Rooney, David, 2021. "Decarbonizing the food and beverages industry: A critical and systematic review of developments, sociotechnical systems and policy options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    22. Tomislav Markovic & Ilja Ocket & Adrijan Baric & Bart Nauwelaers, 2020. "Design and Comparison of Resonant and Non-Resonant Single-Layer Microwave Heaters for Continuous Flow Microfluidics in Silicon-Glass Technology," Energies, MDPI, vol. 13(10), pages 1-13, May.
    23. J. M. Serra & J. F. Borrás-Morell & B. García-Baños & M. Balaguer & P. Plaza-González & J. Santos-Blasco & D. Catalán-Martínez & L. Navarrete & J. M. Catalá-Civera, 2020. "Hydrogen production via microwave-induced water splitting at low temperature," Nature Energy, Nature, vol. 5(11), pages 910-919, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Boyu & Fan, Xing & Yu, Senshen & Xia, Hongying & Nong, Yonghong & Bian, Junping & Sun, Mingyu & Zi, Wenhua, 2023. "Microwave heating of biomass waste residues for sustainable bioenergy and biomass materials preparation: A parametric simulation study," Energy, Elsevier, vol. 274(C).
    2. Siddique, Istiaq Jamil & Salema, Arshad Adam, 2023. "Unraveling the metallic thermocouple effects during microwave heating of biomass," Energy, Elsevier, vol. 267(C).
    3. Ren, Xueyong & Shanb Ghazani, Mohammad & Zhu, Hui & Ao, Wenya & Zhang, Han & Moreside, Emma & Zhu, Jinjiao & Yang, Pu & Zhong, Na & Bi, Xiaotao, 2022. "Challenges and opportunities in microwave-assisted catalytic pyrolysis of biomass: A review," Applied Energy, Elsevier, vol. 315(C).
    4. Luo, Juan & Ma, Rui & Lin, Junhao & Sun, Shichang & Gong, Guojin & Sun, Jiaman & Chen, Yi & Ma, Ning, 2023. "Review of microwave pyrolysis of sludge to produce high quality biogas: Multi-perspectives process optimization and critical issues proposal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    5. Yang, Huayu & Zhang, Yuhao & Gao, Wenhua & Yan, Bowen & Zhao, Jianxin & Zhang, Hao & Chen, Wei & Fan, Daming, 2021. "Steam replacement strategy using microwave resonance: A future system for continuous-flow heating applications," Applied Energy, Elsevier, vol. 283(C).
    6. Sun, Jiaman & Luo, Juan & Lin, Junhao & Ma, Rui & Sun, Shichang & Fang, Lin & Li, Haowen, 2022. "Study of co-pyrolysis endpoint and product conversion of plastic and biomass using microwave thermogravimetric technology," Energy, Elsevier, vol. 247(C).
    7. Furszyfer Del Rio, Dylan D. & Sovacool, Benjamin K. & Foley, Aoife M. & Griffiths, Steve & Bazilian, Morgan & Kim, Jinsoo & Rooney, David, 2022. "Decarbonizing the ceramics industry: A systematic and critical review of policy options, developments and sociotechnical systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    8. Sánchez, Juan R. & Gutiérrez-Cano, José D. & Plaza-González, Pedro J. & Penaranda-Foix, Felipe L. & Catalá-Civera, José M., 2023. "Microwave calorimeter for dielectric and thermal analysis of materials," Energy, Elsevier, vol. 263(PD).
    9. Li, Jinglin & Lin, Li & Ju, Tongyao & Meng, Fanzhi & Han, Siyu & Chen, Kailun & Jiang, Jianguo, 2024. "Microwave-assisted pyrolysis of solid waste for production of high-value liquid oil, syngas, and carbon solids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    10. Kuang, Yucen & Jiang, Tao & Wu, Longqi & Liu, Xiaoqian & Yang, Xuke & Sher, Farooq & Wei, Zhifang & Zhang, Shengfu, 2023. "High-temperature rheological behavior and non-isothermal pyrolysis mechanism of macerals separated from different coals," Energy, Elsevier, vol. 277(C).
    11. Yek, Peter Nai Yuh & Cheng, Yoke Wang & Liew, Rock Keey & Wan Mahari, Wan Adibah & Ong, Hwai Chyuan & Chen, Wei-Hsin & Peng, Wanxi & Park, Young-Kwon & Sonne, Christian & Kong, Sieng Huat & Tabatabaei, 2021. "Progress in the torrefaction technology for upgrading oil palm wastes to energy-dense biochar: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    12. Beata Pytlik & Daniel Smykowski & Piotr Szulc, 2022. "The Impact of Baffle Geometry in the PCM Heat Storage Unit on the Charging Process with High and Low Water Streams," Energies, MDPI, vol. 15(24), pages 1-17, December.
    13. Macián, V. & Serrano, J.R. & Piqueras, P. & Sanchis, E.J., 2019. "Internal pore diffusion and adsorption impact on the soot oxidation in wall-flow particulate filters," Energy, Elsevier, vol. 179(C), pages 407-421.
    14. Renata Toczyłowska-Mamińska & Mariusz Ł. Mamiński, 2022. "Wastewater as a Renewable Energy Source—Utilisation of Microbial Fuel Cell Technology," Energies, MDPI, vol. 15(19), pages 1-14, September.
    15. Róbert Csalódi & Tímea Czvetkó & Viktor Sebestyén & János Abonyi, 2022. "Sectoral Analysis of Energy Transition Paths and Greenhouse Gas Emissions," Energies, MDPI, vol. 15(21), pages 1-26, October.
    16. Sovacool, Benjamin K. & Bazilian, Morgan & Griffiths, Steve & Kim, Jinsoo & Foley, Aoife & Rooney, David, 2021. "Decarbonizing the food and beverages industry: A critical and systematic review of developments, sociotechnical systems and policy options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    17. Qin, Fanzhi & Zhang, Chen & Zeng, Guangming & Huang, Danlian & Tan, Xiaofei & Duan, Abing, 2022. "Lignocellulosic biomass carbonization for biochar production and characterization of biochar reactivity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    18. Juan Manuel Madrid-Solórzano & Jorge Luis García-Alcaraz & Eduardo Martínez Cámara & Julio Blanco Fernández & Emilio Jiménez Macías, 2022. "Sustainable Industrial Sotol Production in Mexico—A Life Cycle Assessment," Agriculture, MDPI, vol. 12(12), pages 1-12, December.
    19. Fridgen, Gilbert & Keller, Robert & Körner, Marc-Fabian & Schöpf, Michael, 2020. "A holistic view on sector coupling," Energy Policy, Elsevier, vol. 147(C).
    20. Wang, Jia & Wen, Mengyuan & Ren, Jurong & La, Xinru & Meng, Xianzhi & Yuan, Xiangzhou & Ragauskas, Arthur J. & Jiang, Jianchun, 2024. "Tailoring microwave frequencies for high-efficiency hydrogen production from biomass," Energy, Elsevier, vol. 297(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:175:y:2023:i:c:s1364032123000394. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.