IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v206y2020ics0360544220313189.html
   My bibliography  Save this article

Investigation on the mechanism of micro-cracks generated by microwave heating in coal and rock

Author

Listed:
  • Lan, Wenjian
  • Wang, Hanxiang
  • Zhang, Xin
  • Fan, Hongbo
  • Feng, Kun
  • Liu, Yanxin
  • Sun, Bingyu

Abstract

In the coalbed methane (CBM) exploration and development, microwave treatment technology can be used to improve the reservoir permeability and enhance coalbed methane recovery. In this paper, the mechanism of microwave heating on micro-cracks in coal and rock is studied. And to research the interactions between microwave and coal, a mathematical model of electromagnetic field and heat transfer in solid coupling is established. Combined with numerical simulation and experimental research, the electromagnetic field distribution and the temperature changing law in coal samples collected from Ordos basin of China during microwave heating process are analyzed. Through the comparisons of appearance identification and internal CT scanning before and after microwave treatment, there are a large number of obvious cracks generated by microwave heating on the surface and inside of coal samples. Three main generation mechanisms of micro-cracks in coal and rock are obtained by SEM analysis. Finally, a new microwave heating technology for CBM recovery is proposed and the structure of waveguide antennas (coaxial) for heating is designed. The simulation results show that the reservoir temperature has been greatly improved and the temperature change rates in the top half of the reservoir are larger which can easily cause the generation of micro-cracks.

Suggested Citation

  • Lan, Wenjian & Wang, Hanxiang & Zhang, Xin & Fan, Hongbo & Feng, Kun & Liu, Yanxin & Sun, Bingyu, 2020. "Investigation on the mechanism of micro-cracks generated by microwave heating in coal and rock," Energy, Elsevier, vol. 206(C).
  • Handle: RePEc:eee:energy:v:206:y:2020:i:c:s0360544220313189
    DOI: 10.1016/j.energy.2020.118211
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220313189
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.118211?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fan, Chaojun & Elsworth, Derek & Li, Sheng & Zhou, Lijun & Yang, Zhenhua & Song, Yu, 2019. "Thermo-hydro-mechanical-chemical couplings controlling CH4 production and CO2 sequestration in enhanced coalbed methane recovery," Energy, Elsevier, vol. 173(C), pages 1054-1077.
    2. Li, Y. & Chen, M.Q. & Li, Q.H. & Huang, Y.W., 2018. "Effect of microwave pretreatment on the combustion behavior of lignite/solid waste briquettes," Energy, Elsevier, vol. 149(C), pages 730-740.
    3. Wang, Wenlong & Zhao, Chao & Sun, Jing & Wang, Xiaolin & Zhao, Xiqiang & Mao, Yanpeng & Li, Xinning & Song, Zhanlong, 2015. "Quantitative measurement of energy utilization efficiency and study of influence factors in typical microwave heating process," Energy, Elsevier, vol. 87(C), pages 678-685.
    4. Duan, Wenjun & Yu, Qingbo & Xie, Huaqing & Qin, Qin, 2017. "Pyrolysis of coal by solid heat carrier-experimental study and kinetic modeling," Energy, Elsevier, vol. 135(C), pages 317-326.
    5. He, Jianming & Li, Xiao & Yin, Chao & Zhang, Yixiang & Lin, Chong, 2020. "Propagation and characterization of the micro cracks induced by hydraulic fracturing in shale," Energy, Elsevier, vol. 191(C).
    6. Lin, Jia & Ren, Ting & Cheng, Yuanping & Nemcik, Jan & Wang, Gongda, 2019. "Cyclic N2 injection for enhanced coal seam gas recovery: A laboratory study," Energy, Elsevier, vol. 188(C).
    7. Abdulrahman, Muhammed Moshin & Meribout, Mahmoud, 2014. "Antenna array design for enhanced oil recovery under oil reservoir constraints with experimental validation," Energy, Elsevier, vol. 66(C), pages 868-880.
    8. Huang, Yu-Fong & Sung, Hsuan-Te & Chiueh, Pei-Te & Lo, Shang-Lien, 2016. "Co-torrefaction of sewage sludge and leucaena by using microwave heating," Energy, Elsevier, vol. 116(P1), pages 1-7.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fan, Shen & Wang, Hanxiang & Zhang, Xin & Liu, Yanxin & Lan, Wenjian & Ma, Wenlong & Sun, Bingyu & Yang, Ning & Ge, Jiawang, 2024. "Study on microwave heating energy supplement technology for gas hydrate reservoir," Energy, Elsevier, vol. 286(C).
    2. Lan, Wenjian & Wang, Hanxiang & Liu, Qihu & Zhang, Xin & Chen, Jingkai & Li, Ziling & Feng, Kun & Chen, Shengshan, 2021. "Investigation on the microwave heating technology for coalbed methane recovery," Energy, Elsevier, vol. 237(C).
    3. Huang, Feifan & Liu, Chao & Cheng, Siqin & Li, Tao, 2024. "Microwave thermal regeneration characteristics of spent activated carbon based on a coupled electromagnetic, heat and mass transfer multiphase porous media model," Energy, Elsevier, vol. 292(C).
    4. Liu, Jia & Xue, Yi & Fu, Yong & Yao, Kai & Liu, Jianqiang, 2023. "Numerical investigation on microwave-thermal recovery of shale gas based on a fully coupled electromagnetic, heat transfer, and multiphase flow model," Energy, Elsevier, vol. 263(PE).
    5. Liang, Cun-Guang & Guo, Ze-Shi & Yue, Xiu & Li, Hui & Ma, Peng-Cheng, 2023. "Microwave-assisted breakage of basalt: A viewpoint on analyzing the thermal and mechanical behavior of rock," Energy, Elsevier, vol. 273(C).
    6. Lei, Jian & Pan, Baozhi & Guo, Yuhang & Fan, YuFei & Xue, Linfu & Deng, Sunhua & Zhang, Lihua & Ruhan, A., 2021. "A comprehensive analysis of the pyrolysis effects on oil shale pore structures at multiscale using different measurement methods," Energy, Elsevier, vol. 227(C).
    7. Wang, Hao & Wang, Liang & Zheng, Siwen & Sun, Yiwei & Shen, Shangkun & Zhang, Xiaolei, 2024. "Research on coal matrix pore structure evolution and adsorption behavior characteristics under different thermal stimulation," Energy, Elsevier, vol. 287(C).
    8. Ma, Zhongjun & Zheng, Yanlong & Li, Jianchun & Zhao, Xiaobao & Zhao, Jian, 2024. "Enhancing rock breakage efficiency by microwave fracturing: A study on antenna selection," Energy, Elsevier, vol. 288(C).
    9. Zhou, Yu & Lv, Wenjun & Zhang, Cheng & Zhou, Zihan & Wang, Hongyu & Liang, Qinyuan & Tang, Qiongqiong & Han, Guansheng & Guo, Wei & Zhao, Dajun, 2024. "Novel hard rock breaking technique using ultra-high-frequency particle impact induced by ultrasonic vibration field," Energy, Elsevier, vol. 288(C).
    10. Yang, Zairong & Wang, Chaolin & Zhao, Yu & Bi, Jing, 2024. "Microwave fracturing of frozen coal with different water content: Pore-structure evolution and temperature characteristics," Energy, Elsevier, vol. 294(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, He & Shi, Shiliang & Lin, Baiquan & Lu, Jiexin & Ye, Qing & Lu, Yi & Wang, Zheng & Hong, Yidu & Zhu, Xiangnan, 2019. "Effects of microwave-assisted pyrolysis on the microstructure of bituminous coals," Energy, Elsevier, vol. 187(C).
    2. Lan, Wenjian & Wang, Hanxiang & Liu, Qihu & Zhang, Xin & Chen, Jingkai & Li, Ziling & Feng, Kun & Chen, Shengshan, 2021. "Investigation on the microwave heating technology for coalbed methane recovery," Energy, Elsevier, vol. 237(C).
    3. Gan, Qingqing & Xu, Jiang & Peng, Shoujian & Yan, Fazhi & Wang, Ruifang & Cai, Guoliang, 2021. "Effect of heating on the molecular carbon structure and the evolution of mechanical properties of briquette coal," Energy, Elsevier, vol. 237(C).
    4. Wenjie Xu & Xigui Zheng & Cancan Liu & Peng Li & Boyang Li & Kundai Michael Shayanowako & Jiyu Wang & Xiaowei Guo & Guowei Lai, 2022. "Numerical Simulation Study of High-Pressure Air Injection to Promote Gas Drainage," Sustainability, MDPI, vol. 14(21), pages 1-15, October.
    5. Zhang, Chaolin & Wang, Enyuan & Li, Bobo & Kong, Xiangguo & Xu, Jiang & Peng, Shoujian & Chen, Yuexia, 2023. "Laboratory experiments of CO2-enhanced coalbed methane recovery considering CO2 sequestration in a coal seam," Energy, Elsevier, vol. 262(PA).
    6. Ali Altowilib & Ahmed AlSaihati & Hussain Alhamood & Saad Alafnan & Sulaiman Alarifi, 2020. "Reserves Estimation for Coalbed Methane Reservoirs: A Review," Sustainability, MDPI, vol. 12(24), pages 1-26, December.
    7. Niu, Qinghe & Wang, Qizhi & Wang, Wei & Chang, Jiangfang & Chen, Mingyi & Wang, Haichao & Cai, Nian & Fan, Li, 2022. "Responses of multi-scale microstructures, physical-mechanical and hydraulic characteristics of roof rocks caused by the supercritical CO2-water-rock reaction," Energy, Elsevier, vol. 238(PB).
    8. Wang, Chongyang & Zhang, Dongming & Liu, Chenxi & Pan, Yisha & Jiang, Zhigang & Yu, Beichen & Lin, Yun, 2023. "Deformation and seepage characteristics of water-saturated shale under true triaxial stress," Energy, Elsevier, vol. 284(C).
    9. Liang, Cun-Guang & Guo, Ze-Shi & Yue, Xiu & Li, Hui & Ma, Peng-Cheng, 2023. "Microwave-assisted breakage of basalt: A viewpoint on analyzing the thermal and mechanical behavior of rock," Energy, Elsevier, vol. 273(C).
    10. Cui, Song & Liu, Songyong & Li, Hongsheng & Zhou, Fangyue & Sun, Dunkai, 2022. "Critical parameters investigation of rock breaking by high-pressure foam fracturing method," Energy, Elsevier, vol. 258(C).
    11. Zhao, Jingyu & Deng, Jun & Wang, Tao & Song, Jiajia & Zhang, Yanni & Shu, Chi-Min & Zeng, Qiang, 2019. "Assessing the effectiveness of a high-temperature-programmed experimental system for simulating the spontaneous combustion properties of bituminous coal through thermokinetic analysis of four oxidatio," Energy, Elsevier, vol. 169(C), pages 587-596.
    12. Zhang, Tianjun & Wu, Jinyu & Pang, Mingkun & Liu, Rongtao & Zhu, Shipeng & Pan, Hongyu, 2024. "Experimental study on the negative pressure loss generated by the gas influx process around a long borehole," Energy, Elsevier, vol. 296(C).
    13. Xu, Chao & Wang, Wenjing & Wang, Kai & Zhou, Aitao & Guo, Lin & Yang, Tong, 2023. "Filling–adsorption mechanism and diffusive transport characteristics of N2/CO2 in coal: Experiment and molecular simulation," Energy, Elsevier, vol. 282(C).
    14. Liu, Zhengdong & Hu, Ze & Zhu, Wancheng & Zhao, Tingting & Liu, Shuyuan & Guo, Zhiguo & Sun, Chen & Bai, Gang, 2024. "Effect of coal permeability evolution on CO2 storage capacity under phase partial pressure in ScCO2-ECBM processes," Energy, Elsevier, vol. 297(C).
    15. Jiang, Xingwen & Chen, Mian & Li, Qinghui & Liang, Lihao & Zhong, Zhen & Yu, Bo & Wen, Hang, 2022. "Study on the feasibility of the heat treatment after shale gas reservoir hydration fracturing," Energy, Elsevier, vol. 254(PB).
    16. Bera, Achinta & Babadagli, Tayfun, 2015. "Status of electromagnetic heating for enhanced heavy oil/bitumen recovery and future prospects: A review," Applied Energy, Elsevier, vol. 151(C), pages 206-226.
    17. Zhenni Ye & Xiaoli Liu & Huan Sun & Qinxi Dong & Weisheng Du & Qijian Long, 2022. "Variations in Permeability and Mechanical Properties of Basaltic Rocks Induced by Carbon Mineralization," Sustainability, MDPI, vol. 14(22), pages 1-18, November.
    18. Tao, Meng & Jl, Xie & Xm, Li & Jw, Ma & Yang, Yue, 2020. "Experimental study on the evolutional trend of pore structures and fractal dimension of low-rank coal rich clay subjected to a coupled thermo-hydro-mechanical-chemical environment," Energy, Elsevier, vol. 203(C).
    19. Yang, Xin & Wang, Gongda & Du, Feng & Jin, Longzhe & Gong, Haoran, 2022. "N2 injection to enhance coal seam gas drainage (N2-ECGD): Insights from underground field trial investigation," Energy, Elsevier, vol. 239(PC).
    20. Gou, Qiyang & Xu, Shang & Hao, Fang & Yang, Feng & Shu, Zhiguo & Liu, Rui, 2021. "The effect of tectonic deformation and preservation condition on the shale pore structure using adsorption-based textural quantification and 3D image observation," Energy, Elsevier, vol. 219(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:206:y:2020:i:c:s0360544220313189. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.