IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v263y2023ipcs0360544222026822.html
   My bibliography  Save this article

Effects of full transient Injection Rate and Initial Spray Trajectory Angle profiles on the CFD simulation of evaporating diesel sprays- comparison between singlehole and multi hole injectors

Author

Listed:
  • Safiullah,
  • Chandra Ray, Samir
  • Nishida, Keiya
  • McDonell, Vincent
  • Ogata, Yoichi

Abstract

This paper investigates experimental and computational diesel sprays of single hole and multi hole injectors under vaporizing conditions. Two single hole and two ten-hole injectors with the same nozzle hole size are tested with the 120 MPa injection pressure. Experiments implement Laser Absorption Scattering technique. This method utilizes two wavelengths (Visible and Ultraviolet) of light and fuel's mixture concentrations are measured by attenuations of these lights. On the other hand, sprays are simulated in the Eulerian Langrangian two-phase fluid framework where KHRT and Multicomponent models are used as droplet breakup and evaporation models respectively. Full transient profiles of Injection Rate and Initial Spray Trajectory Angle are used as input boundary conditions for the spray simulation and effects on the spray characteristics are observed. Injection rates are measured with Bosch Long Tube and Initial Spray Trajectory Angles are extracted from the near nozzle field spray images. Experiments reveal that multi-hole injectors (0.101 mm and 0.133 mm) injectors depict longer liquid and shorter vapor penetrations. However, longer simulation liquid and vapor penetrations are seen for single hole injectors due to increased initial ramp-up phase. Sprays of Multi-hole injectors are diffused radially which promote air entrainment, better mixture formation, improved combustion, and lower exhaust emissions. Overall, simulated sprays using unfiltered injection rate profile as an input parameter showed an excellent agreement with experiments. While sprays using low-pass filtered injection rates showed a clear disagreement. Parameters including Liquid Length, Vapor Penetration and Evaporation ratios were found to be influenced by the IR profile rather than ISTA. Whereas vapor equivalence ratios depend on both input parameters plus breakup model constants.

Suggested Citation

  • Safiullah, & Chandra Ray, Samir & Nishida, Keiya & McDonell, Vincent & Ogata, Yoichi, 2023. "Effects of full transient Injection Rate and Initial Spray Trajectory Angle profiles on the CFD simulation of evaporating diesel sprays- comparison between singlehole and multi hole injectors," Energy, Elsevier, vol. 263(PC).
  • Handle: RePEc:eee:energy:v:263:y:2023:i:pc:s0360544222026822
    DOI: 10.1016/j.energy.2022.125796
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222026822
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.125796?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Susan C. Anenberg & Joshua Miller & Ray Minjares & Li Du & Daven K. Henze & Forrest Lacey & Christopher S. Malley & Lisa Emberson & Vicente Franco & Zbigniew Klimont & Chris Heyes, 2017. "Impacts and mitigation of excess diesel-related NOx emissions in 11 major vehicle markets," Nature, Nature, vol. 545(7655), pages 467-471, May.
    2. Gogoi, T.K. & Baruah, D.C., 2010. "A cycle simulation model for predicting the performance of a diesel engine fuelled by diesel and biodiesel blends," Energy, Elsevier, vol. 35(3), pages 1317-1323.
    3. Abdolsaeid Ganjehkaviri & Mohammad Nazri Mohd Jaafar & Seyed Ehsan Hosseini & Anas Basri Musthafa, 2016. "Performance Evaluation of Palm Oil-Based Biodiesel Combustion in an Oil Burner," Energies, MDPI, vol. 9(2), pages 1-10, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gengxin Zhang & Penghua Shi & Panpan Dong & Fangyu Zhang & Yifei Zhang & Hongliang Luo, 2023. "Experimental Study on the Adhesive Fuel Features of Inclined Wall-Impinging Spray at Various Injection Pressure Levels in a Cross-Flow Field," Sustainability, MDPI, vol. 15(7), pages 1-16, April.
    2. Sicong Xi & Hongyan Li & Kai Ma & Yingying Lu & Wenxiong Xi, 2023. "Study on the Transformation of Combustion Mechanism and Ejection Phenomenon of Aluminum Particles in Methane Flame," Energies, MDPI, vol. 16(10), pages 1-14, May.
    3. Vladimir Dulin & Andrey Cherdantsev & Roman Volkov & Dmitriy Markovich, 2023. "Application of Planar Laser-Induced Fluorescence for Interfacial Transfer Phenomena," Energies, MDPI, vol. 16(4), pages 1-27, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jemni, Mohamed Ali & Kantchev, Gueorgui & Abid, Mohamed Salah, 2011. "Influence of intake manifold design on in-cylinder flow and engine performances in a bus diesel engine converted to LPG gas fuelled, using CFD analyses and experimental investigations," Energy, Elsevier, vol. 36(5), pages 2701-2715.
    2. Wongwuttanasatian, Tanakorn & Jookjantra, Kittichai, 2020. "Effect of dual-frequency pulsed ultrasonic excitation and catalyst size for biodiesel production," Renewable Energy, Elsevier, vol. 152(C), pages 1220-1226.
    3. Perumal, Varatharaju & Ilangkumaran, M., 2018. "Water emulsified hybrid pongamia biodiesel as a modified fuel for the experimental analysis of performance, combustion and emission characteristics of a direct injection diesel engine," Renewable Energy, Elsevier, vol. 121(C), pages 623-631.
    4. Wen-jun Wang & Yan-ni Liu & Xin-ru Ying, 2022. "Does Technological Innovation Curb O 3 Pollution? Evidence from Three Major Regions in China," IJERPH, MDPI, vol. 19(13), pages 1-19, June.
    5. Fabián Vargas & Armando Pérez & Rene Delgado & Emilio Hernández & José Alejandro Suástegui, 2019. "Performance Analysis of a Compression Ignition Engine Using Mixture Biodiesel Palm and Diesel," Sustainability, MDPI, vol. 11(18), pages 1-26, September.
    6. Xiyang Wang & Qilei Yang & Xinbo Li & Zhen Li & Chuan Gao & Hui Zhang & Xuefeng Chu & Carl Redshaw & Shucheng Shi & Yimin A. Wu & Yongliang Ma & Yue Peng & Junhua Li & Shouhua Feng, 2024. "Exploring the dynamic evolution of lattice oxygen on exsolved-Mn2O3@SmMn2O5 interfaces for NO Oxidation," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    7. Tolgahan Kaya & Osman Akın Kutlar & Ozgur Oguz Taskiran, 2018. "Evaluation of the Effects of Biodiesel on Emissions and Performance by Comparing the Results of the New European Drive Cycle and Worldwide Harmonized Light Vehicles Test Cycle," Energies, MDPI, vol. 11(10), pages 1-14, October.
    8. Cai, Hao & Burnham, Andrew & Chen, Rui & Wang, Michael, 2017. "Wells to wheels: Environmental implications of natural gas as a transportation fuel," Energy Policy, Elsevier, vol. 109(C), pages 565-578.
    9. Arunkumar, M. & Kannan, M. & Murali, G., 2019. "Experimental studies on engine performance and emission characteristics using castor biodiesel as fuel in CI engine," Renewable Energy, Elsevier, vol. 131(C), pages 737-744.
    10. Li, Ji & Wu, Dawei & Mohammadsami Attar, Hassan & Xu, Hongming, 2022. "Geometric neuro-fuzzy transfer learning for in-cylinder pressure modelling of a diesel engine fuelled with raw microalgae oil," Applied Energy, Elsevier, vol. 306(PA).
    11. Adepoju, T.F. & Ibeh, M.A. & Udoetuk, E.N. & Babatunde, E.O., 2021. "Quaternary blend of Carica papaya - Citrus sinesis - Hibiscus sabdariffa - Waste used oil for biodiesel synthesis using CaO-based catalyst derived from binary mix of Lattorina littorea and Mactra cora," Renewable Energy, Elsevier, vol. 171(C), pages 22-33.
    12. Paula Quentin & Jost Buscher & Thomas Eltner, 2023. "Transport Planning beyond Infrastructural Change: An Empirical Analysis of Transport Planning Practices in the Rhine-Main Region in Germany," Sustainability, MDPI, vol. 15(13), pages 1-17, June.
    13. Lu Wang & Xue Chen & Yan Xia & Linhui Jiang & Jianjie Ye & Tangyan Hou & Liqiang Wang & Yibo Zhang & Mengying Li & Zhen Li & Zhe Song & Yaping Jiang & Weiping Liu & Pengfei Li & Xiaoye Zhang & Shaocai, 2022. "Operational Data-Driven Intelligent Modelling and Visualization System for Real-World, On-Road Vehicle Emissions—A Case Study in Hangzhou City, China," Sustainability, MDPI, vol. 14(9), pages 1-22, April.
    14. Muhammad Syahiran Abdul Malik & Ashrul Ishak Mohamad Shaiful & Mohd Shuisma Mohd. Ismail & Mohammad Nazri Mohd Jaafar & Amirah Mohamad Sahar, 2017. "Combustion and Emission Characteristics of Coconut-Based Biodiesel in a Liquid Fuel Burner," Energies, MDPI, vol. 10(4), pages 1-12, April.
    15. Huang, Yuhan & Surawski, Nic C. & Zhuang, Yuan & Zhou, John L. & Hong, Guang, 2021. "Dual injection: An effective and efficient technology to use renewable fuels in spark ignition engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    16. Feng, Tong & Sun, Yuechi & Shi, Yating & Ma, Jie & Feng, Chunmei & Chen, Zhenni, 2024. "Air pollution control policies and impacts: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    17. Noge, Hirofumi & Ueno, Yoshie & Kadir, Hasannuddin Abdul & Yahya, Wira Jazair, 2021. "Utilization of palm acid oil for a diffusion combustion burner as fuel and nitrogen oxides reduction by the thermally decomposed hydrocarbons," Energy, Elsevier, vol. 224(C).
    18. Hwei Voon Lee & Joon Ching Juan & Taufiq-Yap Yun Hin & Hwai Chyuan Ong, 2016. "Environment-Friendly Heterogeneous Alkaline-Based Mixed Metal Oxide Catalysts for Biodiesel Production," Energies, MDPI, vol. 9(8), pages 1-12, August.
    19. Hu, Jibin & Wu, Wei & Yuan, Shihua & Jing, Chongbo, 2011. "Mathematical modelling of a hydraulic free-piston engine considering hydraulic valve dynamics," Energy, Elsevier, vol. 36(10), pages 6234-6242.
    20. McCaffery, Cavan & Yang, Jiacheng & Karavalakis, Georgios & Yoon, Seungju & Johnson, Kent C. & Miller, J. Wayne & Durbin, Thomas D., 2022. "Evaluation of small off-road diesel engine emissions and aftertreatment systems," Energy, Elsevier, vol. 251(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:263:y:2023:i:pc:s0360544222026822. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.