IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i7p6312-d1117520.html
   My bibliography  Save this article

Experimental Study on the Adhesive Fuel Features of Inclined Wall-Impinging Spray at Various Injection Pressure Levels in a Cross-Flow Field

Author

Listed:
  • Gengxin Zhang

    (Department of Mechanical Engineering, School of Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK)

  • Penghua Shi

    (Mechanical Engineering Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan)

  • Panpan Dong

    (Department of Automotive Engineering, Hebei Jiaotong Vocational and Technical College, Shijiazhuang 050035, China)

  • Fangyu Zhang

    (Department of Mechanical Engineering, School of Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK)

  • Yifei Zhang

    (Department of Mechanical Engineering, School of Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK)

  • Hongliang Luo

    (College of Power and Energy Engineering, Harbin Engineering University, Harbin 150001, China)

Abstract

The wall-impingement phenomenon significantly impacts mixture formation, combustible performance, and pollutant release in DISI engines. However, there is insufficient knowledge regarding the behavior of fuel adhesion. Thus, here, we examine adhesive fuel features at various injection pressure levels (5 and 10 MPa) in a cross-flow field (0 to 50 m/s). The RIM optical method was employed to track the expansion and distribution of fuel adhesion. As a result, adhesive fuel features such as area, mass, thickness, and lifetime were assessed. Postprocessing image analysis reveals that fuel adhesion was consistently thinner at the edge region. With increased injection pressure, the cross flow led to a rise in the fuel-adhesion area and mass; however, small changes in pressure did not affect adhesive thickness. Adhesive thickness significantly decreased in the cross flow, indicating enhanced evaporation potential. Furthermore, lifetime prediction was conducted to quantitatively evaluate the impact of cross flow and injection pressure upon fuel adhesion, which could be calculated by examining the decreasing trend in adhesive area. Results show that the lifetime was dramatically reduced with higher cross-flow velocity, and slightly decreased with lower injection pressure. Under injection pressure of 10 MPa, the adhesive lifetime in the cross-flow field of 50 m/s was reduced by 77.5% compared with the static flow field (0 m/s). The experimental results provide corresponding guidance for low-carbon fuel utilization and emission reduction in DISI engines.

Suggested Citation

  • Gengxin Zhang & Penghua Shi & Panpan Dong & Fangyu Zhang & Yifei Zhang & Hongliang Luo, 2023. "Experimental Study on the Adhesive Fuel Features of Inclined Wall-Impinging Spray at Various Injection Pressure Levels in a Cross-Flow Field," Sustainability, MDPI, vol. 15(7), pages 1-16, April.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:7:p:6312-:d:1117520
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/7/6312/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/7/6312/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Safiullah, & Chandra Ray, Samir & Nishida, Keiya & McDonell, Vincent & Ogata, Yoichi, 2023. "Effects of full transient Injection Rate and Initial Spray Trajectory Angle profiles on the CFD simulation of evaporating diesel sprays- comparison between singlehole and multi hole injectors," Energy, Elsevier, vol. 263(PC).
    2. Wang, Chenxi & Pei, Yiqiang & Qin, Jing & Peng, Zhijun & Liu, Yi & Xu, Kai & Ye, Ziwang, 2021. "Laser induced fluorescence investigation on deposited fuel film from spray impingement on viscous film over a solid wall," Energy, Elsevier, vol. 231(C).
    3. Rami Y. Dahham & Haiqiao Wei & Jiaying Pan, 2022. "Improving Thermal Efficiency of Internal Combustion Engines: Recent Progress and Remaining Challenges," Energies, MDPI, vol. 15(17), pages 1-60, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alçelik, Necdet & Sarıdemir, Suat & Polat, Fikret & Ağbulut, Ümit, 2024. "Role of hydrogen-enrichment for in-direct diesel engine behaviours fuelled with the diesel-waste biodiesel blends," Energy, Elsevier, vol. 302(C).
    2. Vladimir Dulin & Andrey Cherdantsev & Roman Volkov & Dmitriy Markovich, 2023. "Application of Planar Laser-Induced Fluorescence for Interfacial Transfer Phenomena," Energies, MDPI, vol. 16(4), pages 1-27, February.
    3. Sicong Xi & Hongyan Li & Kai Ma & Yingying Lu & Wenxiong Xi, 2023. "Study on the Transformation of Combustion Mechanism and Ejection Phenomenon of Aluminum Particles in Methane Flame," Energies, MDPI, vol. 16(10), pages 1-14, May.
    4. Wang, Dongfang & Zhang, Jiahao & Li, Yikai & Shi, Zhongjie & Yang, Ziming, 2023. "Experimental investigation of a post-combustion pool fire phenomenon due to the spray-wall interaction under DI engine-like cold-start conditions," Energy, Elsevier, vol. 274(C).
    5. Navid Balazadeh Meresht & Sina Moghadasi & Sandeep Munshi & Mahdi Shahbakhti & Gordon McTaggart-Cowan, 2023. "Advances in Vehicle and Powertrain Efficiency of Long-Haul Commercial Vehicles: A Review," Energies, MDPI, vol. 16(19), pages 1-37, September.
    6. Gu, Yuanqi & Fan, Liyun & Lan, Qi & Wei, Yunpeng, 2023. "Experimental study on the transient supply consistency for a common rail pump based on impedance theory," Energy, Elsevier, vol. 283(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:7:p:6312-:d:1117520. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.