IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v263y2023ipbs0360544222025841.html
   My bibliography  Save this article

Theoretical model for flat plate solar collectors operating with nanofluids: Case study for Porto Alegre, Brazil

Author

Listed:
  • Geovo, Leonardo
  • Ri, Guilherme Dal
  • Kumar, Rahul
  • Verma, Sujit Kumar
  • Roberts, Justo J.
  • Mendiburu, Andrés Z.

Abstract

The present work aims to investigate the theoretical model of a flat-plate solar collector considering nanofluids as heat transport medium. For this purpose, solar irradiance decomposition and transposition models have been implemented. Also, the different models for determining the thermophysical properties of nanofluids were implemented and compared with experimental data on these properties. The theoretical model was implemented in Matlab software and validated by comparison with experimental data from a flat-plate solar collector with MgO water. The results show that the maximum relative error was 5.36%, the minimum relative error was 0.20%, and the mean relative error was 2.02% when the model was validated with experimental data for MgO-water nanofluid with volume concentrations between 0 and 1.5%. Therefore, the theoretical model was successfully extended to simulate flat-plate solar collectors with MgO-water nanofluid. A parametric study showed that a nanofluid with a volume concentration of 0.75% MgO exhibited a higher relative increase in thermal efficiency compared to pure water. Moreover, the theoretical model was applied to a case study by simulating the annual performance of the collector in Porto Alegre, Brazil, when it was operated with MgO water. This showed satisfactory effects and great potential for application.

Suggested Citation

  • Geovo, Leonardo & Ri, Guilherme Dal & Kumar, Rahul & Verma, Sujit Kumar & Roberts, Justo J. & Mendiburu, Andrés Z., 2023. "Theoretical model for flat plate solar collectors operating with nanofluids: Case study for Porto Alegre, Brazil," Energy, Elsevier, vol. 263(PB).
  • Handle: RePEc:eee:energy:v:263:y:2023:i:pb:s0360544222025841
    DOI: 10.1016/j.energy.2022.125698
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222025841
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.125698?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mehdi Mehrpooya & Meqdad Dehqani & Seyed Ali Mousavi & SM Ali Moosavian, 2022. "Heat transfer and economic analyses of using various nanofluids in shell and tube heat exchangers for the cogeneration and solar-driven organic Rankine cycle systems [Decision-making between renewa," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 17, pages 11-22.
    2. Choudhary, Suraj & Sachdeva, Anish & Kumar, Pramod, 2020. "Influence of stable zinc oxide nanofluid on thermal characteristics of flat plate solar collector," Renewable Energy, Elsevier, vol. 152(C), pages 1160-1170.
    3. Ashour, Amr Fathy & El-Awady, Ahmed T. & Tawfik, Mohsen A., 2022. "Numerical investigation on the thermal performance of a flat plate solar collector using ZnO & CuO water nanofluids under Egyptian weathering conditions," Energy, Elsevier, vol. 240(C).
    4. Mutschler, Robin & Rüdisüli, Martin & Heer, Philipp & Eggimann, Sven, 2021. "Benchmarking cooling and heating energy demands considering climate change, population growth and cooling device uptake," Applied Energy, Elsevier, vol. 288(C).
    5. Tembhare, Saurabh P. & Barai, Divya P. & Bhanvase, Bharat A., 2022. "Performance evaluation of nanofluids in solar thermal and solar photovoltaic systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    6. Sadegh Hosseini, Seyed Mohammad & Dehaj, Mohammad Shafiey, 2021. "An experimental study on energetic performance evaluation of a parabolic trough solar collector operating with Al2O3/water and GO/water nanofluids," Energy, Elsevier, vol. 234(C).
    7. Choudhary, Suraj & Sachdeva, Anish & Kumar, Pramod, 2020. "Investigation of the stability of MgO nanofluid and its effect on the thermal performance of flat plate solar collector," Renewable Energy, Elsevier, vol. 147(P1), pages 1801-1814.
    8. Sharafeldin, Mahmoud Ahmed & Gróf, Gyula & Mahian, Omid, 2017. "Experimental study on the performance of a flat-plate collector using WO3/Water nanofluids," Energy, Elsevier, vol. 141(C), pages 2436-2444.
    9. Zhai, Chong & Wu, Wei, 2022. "Energetic, exergetic, economic, and environmental analysis of microchannel membrane-based absorption refrigeration system driven by various energy sources," Energy, Elsevier, vol. 239(PB).
    10. Meng, Zhaoguo & Li, Zhenlin & Li, Yang & Zhang, Canying & Wang, Kongxiang & Yu, Wei & Wu, Daxiong & Zhu, Haitao & Li, Wei, 2022. "Novel nanofluid based efficient solar vaporization systems with applications in desalination and wastewater treatment," Energy, Elsevier, vol. 247(C).
    11. Ferrão Teixeira Alves, Luiz Otávio & Henríquez, Jorge R. & da Costa, José Ângelo P. & Abramchuk, Vagner, 2022. "Comparative performance analysis of internal combustion engine water jacket coolant using a mix of Al2O3 and CuO-based nanofluid and ethylene glycol," Energy, Elsevier, vol. 250(C).
    12. Bretado-de los Rios, Mariana S. & Rivera-Solorio, Carlos I. & Nigam, K.D.P., 2021. "An overview of sustainability of heat exchangers and solar thermal applications with nanofluids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vetrivel Kumar Kandasamy & Sivakumar Jaganathan & Ratchagaraja Dhairiyasamy & Silambarasan Rajendran, 2023. "Optimizing the efficiency of solar thermal collectors and studying the effect of particle concentration and stability using nanofluidic analysis," Energy & Environment, , vol. 34(5), pages 1564-1591, August.
    2. Hai, Tao & Zoghi, Mohammad & Habibi, Hamed, 2023. "Comparison between two LiBr–H2O absorption-compression chillers and a simple absorption chiller driven by various solar collectors: Exergy-economic performance and optimization," Energy, Elsevier, vol. 282(C).
    3. Radwan, Ali & Abo-Zahhad, Essam M. & El-Sharkawy, Ibrahim I. & Said, Zafar & Abdelrehim, Osama & Memon, Saim & Cheng, Ping & Soliman, Ahmed Saad, 2024. "Thermal analysis of a bifacial vacuum-based solar thermal collector," Energy, Elsevier, vol. 294(C).
    4. L, Chilambarasan & Thangarasu, Vinoth & Ramasamy, Prakash, 2024. "Solar flat plate collector's heat transfer enhancement using grooved tube configuration with alumina nanofluids: Prediction of outcomes through artificial neural network modeling," Energy, Elsevier, vol. 289(C).
    5. Mi, Peiyuan & Zhang, Jili & Gao, Jin & Han, Youhua, 2023. "Study on optimal allocation of solar photovoltaic thermal heat pump integrated energy system for domestic hot water," Renewable Energy, Elsevier, vol. 219(P1).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ashour, Amr Fathy & El-Awady, Ahmed T. & Tawfik, Mohsen A., 2022. "Numerical investigation on the thermal performance of a flat plate solar collector using ZnO & CuO water nanofluids under Egyptian weathering conditions," Energy, Elsevier, vol. 240(C).
    2. Tembhare, Saurabh P. & Barai, Divya P. & Bhanvase, Bharat A., 2022. "Performance evaluation of nanofluids in solar thermal and solar photovoltaic systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    3. Akram, Naveed & Montazer, Elham & Kazi, S.N. & Soudagar, Manzoore Elahi M. & Ahmed, Waqar & Zubir, Mohd Nashrul Mohd & Afzal, Asif & Muhammad, Mohd Ridha & Ali, Hafiz Muhammad & Márquez, Fausto Pedro , 2021. "Experimental investigations of the performance of a flat-plate solar collector using carbon and metal oxides based nanofluids," Energy, Elsevier, vol. 227(C).
    4. Vakili, Masoud & Yahyaei, Masood & Ramsay, James & Aghajannezhad, Pouria & Paknezhad, Behnaz, 2021. "Adaptive neuro-fuzzy inference system modeling to predict the performance of graphene nanoplatelets nanofluid-based direct absorption solar collector based on experimental study," Renewable Energy, Elsevier, vol. 163(C), pages 807-824.
    5. Vahidinia, F. & Khorasanizadeh, H., 2024. "Comparative energy, exergy and entropy generation study of a minichannel and a conventional solar flat plat collectors," Energy, Elsevier, vol. 304(C).
    6. Sudhir Kumar Pathak & Tagamud Tazmeen & K. Chopra & V. V. Tyagi & Sanjeev Anand & Ammar M. Abdulateef & A. K. Pandey, 2023. "Sustainable Energy Progress via Integration of Thermal Energy Storage and Other Performance Enhancement Strategies in FPCs: A Synergistic Review," Sustainability, MDPI, vol. 15(18), pages 1-37, September.
    7. Rüdisüli, Martin & Romano, Elliot & Eggimann, Sven & Patel, Martin K., 2022. "Decarbonization strategies for Switzerland considering embedded greenhouse gas emissions in electricity imports," Energy Policy, Elsevier, vol. 162(C).
    8. Rao, Congjun & Zhang, Yue & Wen, Jianghui & Xiao, Xinping & Goh, Mark, 2023. "Energy demand forecasting in China: A support vector regression-compositional data second exponential smoothing model," Energy, Elsevier, vol. 263(PC).
    9. Zhou, Liqun & Wang, Yiping & Huang, Qunwu, 2019. "Parametric analysis on the performance of flat plate collector with transparent insulation material," Energy, Elsevier, vol. 174(C), pages 534-542.
    10. Peng, Hao & Guo, Wenhua & Li, Meilin, 2020. "Thermal-hydraulic and thermodynamic performances of liquid metal based nanofluid in parabolic trough solar receiver tube," Energy, Elsevier, vol. 192(C).
    11. Alireza Baghizade & Farshad Farahbod & Omid Alizadeh, 2024. "Laboratory and mathematical investigation of salt deposition in a closed solar desalination pond," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(8), pages 20583-20595, August.
    12. Yang, Ruitong & Li, Dong & Arıcı, Müslüm & Salazar, Samanta López & Wu, Yangyang & Liu, Changyu & Yıldız, Çağatay, 2023. "Spectrally selective nanoparticle-enhanced phase change materials: A study on data-driven optical/thermal properties and application of energy-saving glazing under different climatic conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 186(C).
    13. Berto, Arianna & Mattiuzzo, Nicolò & Zanetti, Emanuele & Meneghetti, Moreno & Del Col, Davide, 2024. "Measurements of solar energy absorption in a solar collector using carbon nanofluids," Renewable Energy, Elsevier, vol. 230(C).
    14. Humaira Yasmin & Solomon O. Giwa & Saima Noor & Hikmet Ş. Aybar, 2023. "Reproduction of Nanofluid Synthesis, Thermal Properties and Experiments in Engineering: A Research Paradigm Shift," Energies, MDPI, vol. 16(3), pages 1-32, January.
    15. Biswas, Nirmalendu & Mandal, Dipak Kumar & Manna, Nirmal K. & Benim, Ali Cemal, 2023. "Enhanced energy and mass transport dynamics in a thermo-magneto-bioconvective porous system containing oxytactic bacteria and nanoparticles: cleaner energy application," Energy, Elsevier, vol. 263(PB).
    16. Gao, Datong & Zhong, Shuai & Ren, Xiao & Kwan, Trevor Hocksun & Pei, Gang, 2022. "The energetic, exergetic, and mechanical comparison of two structurally optimized non-concentrating solar collectors for intermediate temperature applications," Renewable Energy, Elsevier, vol. 184(C), pages 881-898.
    17. Ham, Jeonggyun & Shin, Yunchan & Cho, Honghyun, 2022. "Comparison of thermal performance between a surface and a volumetric absorption solar collector using water and Fe3O4 nanofluid," Energy, Elsevier, vol. 239(PC).
    18. Chakraborty, Oveepsa, 2023. "Influence of spinning flower structure inserts in the thermal performance of LS-2 model of parabolic trough collector with ternary hybrid nanofluid," Renewable Energy, Elsevier, vol. 210(C), pages 215-228.
    19. Ayou, Dereje S. & Wardhana, Muhammad Fa'iq Vidi & Coronas, Alberto, 2023. "Performance analysis of a reversible water/LiBr absorption heat pump connected to district heating network in warm and cold climates," Energy, Elsevier, vol. 268(C).
    20. Arunkumar, T. & Parbat, Dibyangana & Lee, Sang Joon, 2024. "Comprehensive review of advanced desalination technologies for solar-powered all-day, all-weather freshwater harvesting systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:263:y:2023:i:pb:s0360544222025841. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.