IDEAS home Printed from https://ideas.repec.org/a/oup/ijlctc/v17y2022ip11-22..html
   My bibliography  Save this article

Heat transfer and economic analyses of using various nanofluids in shell and tube heat exchangers for the cogeneration and solar-driven organic Rankine cycle systems
[Decision-making between renewable energy configurations and grid extension to simultaneously supply electrical power and fresh water in remote villages for five different climate zones]

Author

Listed:
  • Mehdi Mehrpooya
  • Meqdad Dehqani
  • Seyed Ali Mousavi
  • SM Ali Moosavian

Abstract

This project attempts to evaluate the effect of nanofluids on thermal performance and the economic parameters of shell and tube heat exchangers. First, two thermodynamic processes including combined heat and power (CHP) system and solar-driven organic Rankine cycle (ORC) are simulated using the Aspen HYSYS. The CHP and ORC systems can produce 25 MW and 175.8 kW of electrical power, respectively. Thereafter, to use the nanofluids in the heat exchangers of these systems, the thermophysical specifications are modeled in the MATLAB software and validated with previous investigations. For this purpose, four kinds of nanofluids consisting of Al2O3/H2O, TiO2/H2O, Cu/H2O and Ag/H2O are utilized. According to the results, by adding the nanoparticles to the base fluid, the thermal conductivity, viscosity, heat transfer coefficient and density increase and the heat capacity reduces. The economic assessment and parametric analysis on concentration of the nanoparticles are conducted. The variations of concentration of nanoparticles are taken to be 0.5–4%. It was found that in ORC system, by employing 1% concentration of Ag/H2O, Cu/H2O, Al2O3/H2O and TiO2/water nanofluids, the overall cost is reduced by 3.1%, 1.9%, 1.2% and 0.9%, respectively. Also, in CHP system, at a concentration of 2% for Ag/water, Cu/water Al2O3/water and TiO2/water nanofluids, the total cost decreases by 4.4%, 3%, 1% and 0.5%, respectively. It was denoted that the utilization of nanofluids in thermodynamic cycles can considerably reduce the total cost of heat exchangers and the whole process.

Suggested Citation

  • Mehdi Mehrpooya & Meqdad Dehqani & Seyed Ali Mousavi & SM Ali Moosavian, 2022. "Heat transfer and economic analyses of using various nanofluids in shell and tube heat exchangers for the cogeneration and solar-driven organic Rankine cycle systems [Decision-making between renewa," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 17, pages 11-22.
  • Handle: RePEc:oup:ijlctc:v:17:y:2022:i::p:11-22.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/ijlct/ctab075
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Geovo, Leonardo & Ri, Guilherme Dal & Kumar, Rahul & Verma, Sujit Kumar & Roberts, Justo J. & Mendiburu, Andrés Z., 2023. "Theoretical model for flat plate solar collectors operating with nanofluids: Case study for Porto Alegre, Brazil," Energy, Elsevier, vol. 263(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:ijlctc:v:17:y:2022:i::p:11-22.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/ijlct .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.