IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v210y2023icp215-228.html
   My bibliography  Save this article

Influence of spinning flower structure inserts in the thermal performance of LS-2 model of parabolic trough collector with ternary hybrid nanofluid

Author

Listed:
  • Chakraborty, Oveepsa

Abstract

Parabolic solar trough collector is the most widely accepted technology to use inexhaustible energy. Present research work proposed LS-2 model of parabolic trough collector with various spinning flower inserts and three particles based nanofluid as a heat-carrying medium. Main intention of this examination is to lower the temperature gradient in fluid flow and provide uniform distribution of heat flux on the receiver's outermost surface. A total of ten cases of PTC are examined in ANSYS 22 Fluent. Nine steady receivers are equipped with spinning flower inserts and one without inserts. Hybrid nanofluids with 1% vol. content are attained by blending aluminum oxide, copper oxide, and graphene oxide with water as base fluid. This evolution focuses on the consideration of spinning inserts in the receiver with a range of speed from 0 to 15 rad/s. The flow rate is from 0.016 kg/s - 0.033 kg/s respectively. Highest enhancement for thermal efficiency and heat transfer coefficient are 30.87% and 98.34% for case-9 at 15 rad/s inserts speed than receiver without inserts using nanofluid-6 at 0.033 kg/s. Under the same condition, the highest increment for the pump work requirement is 21.29% for case-9 than receiver without inserts. This means increment of pump work is insignificant than thermal performance improvements.

Suggested Citation

  • Chakraborty, Oveepsa, 2023. "Influence of spinning flower structure inserts in the thermal performance of LS-2 model of parabolic trough collector with ternary hybrid nanofluid," Renewable Energy, Elsevier, vol. 210(C), pages 215-228.
  • Handle: RePEc:eee:renene:v:210:y:2023:i:c:p:215-228
    DOI: 10.1016/j.renene.2023.03.112
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123004159
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.03.112?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Joseph, Albin & Sreekumar, Sreehari & Thomas, Shijo, 2020. "Energy and exergy analysis of SiO2/Ag-CuO plasmonic nanofluid on direct absorption parabolic solar collector," Renewable Energy, Elsevier, vol. 162(C), pages 1655-1664.
    2. Bellos, E. & Tzivanidis, C. & Antonopoulos, K.A. & Gkinis, G., 2016. "Thermal enhancement of solar parabolic trough collectors by using nanofluids and converging-diverging absorber tube," Renewable Energy, Elsevier, vol. 94(C), pages 213-222.
    3. Kumar, Sanjay & Sharma, Vipin & Samantaray, Manas R. & Chander, Nikhil, 2020. "Experimental investigation of a direct absorption solar collector using ultra stable gold plasmonic nanofluid under real outdoor conditions," Renewable Energy, Elsevier, vol. 162(C), pages 1958-1969.
    4. Xiao, Hui & Liu, Peng & Liu, Zhichun & Liu, Wei, 2021. "Performance analyses in parabolic trough collectors by inserting novel inclined curved-twisted baffles," Renewable Energy, Elsevier, vol. 165(P2), pages 14-27.
    5. Mwesigye, Aggrey & Meyer, Josua P., 2017. "Optimal thermal and thermodynamic performance of a solar parabolic trough receiver with different nanofluids and at different concentration ratios," Applied Energy, Elsevier, vol. 193(C), pages 393-413.
    6. Bellos, Evangelos & Tzivanidis, Christos, 2018. "Investigation of a star flow insert in a parabolic trough solar collector," Applied Energy, Elsevier, vol. 224(C), pages 86-102.
    7. Sadegh Hosseini, Seyed Mohammad & Dehaj, Mohammad Shafiey, 2021. "An experimental study on energetic performance evaluation of a parabolic trough solar collector operating with Al2O3/water and GO/water nanofluids," Energy, Elsevier, vol. 234(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Zhuo & Han, Xinyue & Ma, Yu, 2024. "Performance analysis of a novel direct absorption parabolic trough solar collector with combined absorption using MCRT and FVM coupled method," Renewable Energy, Elsevier, vol. 220(C).
    2. Oveepsa Chakraborty & Sujit Roy & Biplab K. Debnath & Sushant Negi & Marc A. Rosen & Sadegh Safari & Mamdouh El Haj Assad & Rajat Gupta & Biplab Das, 2024. "Energy, exergy, environment and techno-economic analysis of parabolic trough collector: A comprehensive review," Energy & Environment, , vol. 35(2), pages 1118-1181, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gong, Jing-hu & Wang, Jun & Lund, Peter D. & Zhao, Dan-dan & Xu, Jing-wen & Jin, Yi-hao, 2021. "Comparative study of heat transfer enhancement using different fins in semi-circular absorber tube for large-aperture trough solar concentrator," Renewable Energy, Elsevier, vol. 169(C), pages 1229-1241.
    2. El-Bakry, M. Medhat & Kassem, Mahmoud A. & Hassan, Muhammed A., 2021. "Passive performance enhancement of parabolic trough solar concentrators using internal radiation heat shields," Renewable Energy, Elsevier, vol. 165(P1), pages 52-66.
    3. Ajbar, Wassila & Parrales, A. & Huicochea, A. & Hernández, J.A., 2022. "Different ways to improve parabolic trough solar collectors’ performance over the last four decades and their applications: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    4. Hu, Tianxiang & Kwan, Trevor Hocksun & Zhang, Han & Wang, Qiliang & Pei, Gang, 2023. "Thermal performance investigation of the newly shaped vacuum tubes of parabolic trough collector system," Energy, Elsevier, vol. 278(C).
    5. Osorio, Julian D. & Rivera-Alvarez, Alejandro, 2022. "Influence of the concentration ratio on the thermal and economic performance of parabolic trough collectors," Renewable Energy, Elsevier, vol. 181(C), pages 786-802.
    6. Yılmaz, İbrahim Halil & Mwesigye, Aggrey, 2018. "Modeling, simulation and performance analysis of parabolic trough solar collectors: A comprehensive review," Applied Energy, Elsevier, vol. 225(C), pages 135-174.
    7. Mwesigye, Aggrey & Yılmaz, İbrahim Halil & Meyer, Josua P., 2018. "Numerical analysis of the thermal and thermodynamic performance of a parabolic trough solar collector using SWCNTs-Therminol®VP-1 nanofluid," Renewable Energy, Elsevier, vol. 119(C), pages 844-862.
    8. Chen, Zhuo & Han, Xinyue & Ma, Yu, 2024. "Performance analysis of a novel direct absorption parabolic trough solar collector with combined absorption using MCRT and FVM coupled method," Renewable Energy, Elsevier, vol. 220(C).
    9. Manikandan, G.K. & Iniyan, S. & Goic, Ranko, 2019. "Enhancing the optical and thermal efficiency of a parabolic trough collector – A review," Applied Energy, Elsevier, vol. 235(C), pages 1524-1540.
    10. Mohammed, Hussein A. & Vuthaluru, Hari B. & Liu, Shaomin, 2022. "Thermohydraulic and thermodynamics performance of hybrid nanofluids based parabolic trough solar collector equipped with wavy promoters," Renewable Energy, Elsevier, vol. 182(C), pages 401-426.
    11. Bellos, Evangelos & Tzivanidis, Christos & Tsimpoukis, Dimitrios, 2017. "Multi-criteria evaluation of parabolic trough collector with internally finned absorbers," Applied Energy, Elsevier, vol. 205(C), pages 540-561.
    12. Moghimi, M.A. & Ahmadi, G., 2018. "Wind barriers optimization for minimizing collector mirror soiling in a parabolic trough collector plant," Applied Energy, Elsevier, vol. 225(C), pages 413-423.
    13. Dimitrios N. Korres & Evangelos Bellos & Christos Tzivanidis, 2022. "Integration of a Linear Cavity Receiver in an Asymmetric Compound Parabolic Collector," Energies, MDPI, vol. 15(22), pages 1-19, November.
    14. Abubakr, Mohamed & Amein, Hamza & Akoush, Bassem M. & El-Bakry, M. Medhat & Hassan, Muhammed A., 2020. "An intuitive framework for optimizing energetic and exergetic performances of parabolic trough solar collectors operating with nanofluids," Renewable Energy, Elsevier, vol. 157(C), pages 130-149.
    15. Dimitrios N. Korres & Theodoros Papingiotis & Irene Koronaki & Christos Tzivanidis, 2023. "Thermal and Optical Analyses of a Hybrid Solar Photovoltaic/Thermal (PV/T) Collector with Asymmetric Reflector: Numerical Modeling and Validation with Experimental Results," Sustainability, MDPI, vol. 15(13), pages 1-22, June.
    16. Yang, S. & Ordonez, J.C., 2019. "3D thermal-hydraulic analysis of a symmetric wavy parabolic trough absorber pipe," Energy, Elsevier, vol. 189(C).
    17. Bellos, Evangelos & Tzivanidis, Christos & Tsimpoukis, Dimitrios, 2018. "Enhancing the performance of parabolic trough collectors using nanofluids and turbulators," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 358-375.
    18. Chen, Heng & Mansir, Ibrahim B. & Chauhan, Bhupendra Singh & Al-Zahrani, Ahmed & Deifalla, Ahmed & Hua, Yinhai & Peng, Fan, 2023. "A comprehensive numerical study on the effectiveness of a rotational-based PTC collector integrated porous foam and PV module," Renewable Energy, Elsevier, vol. 215(C).
    19. Oveepsa Chakraborty & Sujit Roy & Biplab K. Debnath & Sushant Negi & Marc A. Rosen & Sadegh Safari & Mamdouh El Haj Assad & Rajat Gupta & Biplab Das, 2024. "Energy, exergy, environment and techno-economic analysis of parabolic trough collector: A comprehensive review," Energy & Environment, , vol. 35(2), pages 1118-1181, March.
    20. Ambreen, Tehmina & Kim, Man-Hoe, 2020. "Influence of particle size on the effective thermal conductivity of nanofluids: A critical review," Applied Energy, Elsevier, vol. 264(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:210:y:2023:i:c:p:215-228. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.