IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v262y2023ipbs036054422202432x.html
   My bibliography  Save this article

Experimental investigation of the two-stage ignition delay and flame structure of pentanol/n-dodecane binary fuel

Author

Listed:
  • Yan, Feibin
  • Zhong, Wenjun
  • Xiang, Qilong
  • Pachiannan, Tamilselvan
  • Wang, Wenjun
  • He, Zhixia
  • Wang, Qian

Abstract

High thermal efficiency and low emissions are achievable with pentanol direct injection compression ignition, but there are issues of difficulty and unstable combustion at low loads. To solve the above problem, a binary fuel is obtained by blending high-activity n-dodecane with pentanol. In a constant-volume combustion chamber, the natural flame luminosity, schlieren, formaldehyde planar laser-induced fluorescence, and the OH* chemiluminescence methods were used to investigate the combustion characteristics of the two-stage ignition delay, the formaldehyde, and the flame liftoff length. The results show that, compared with n-dodecane, the two-stage ignition delay of pentanol/n-dodecane binary fuel is longer; and the initial time of the formaldehyde signal of pentanol/n-dodecane binary fuel is delayed by about 100 μs? Additionally, under all operating conditions, the initial position of formaldehyde varies concurrently with changes in the flame lift-off position, and the formaldehyde signals of the pentanol/n-dodecane binary fuel and n-dodecane gradually decrease downstream from the flame liftoff position. The pentanol/n-dodecane combustion model was built with experimental data, and it can be helpful in further numerical simulation.

Suggested Citation

  • Yan, Feibin & Zhong, Wenjun & Xiang, Qilong & Pachiannan, Tamilselvan & Wang, Wenjun & He, Zhixia & Wang, Qian, 2023. "Experimental investigation of the two-stage ignition delay and flame structure of pentanol/n-dodecane binary fuel," Energy, Elsevier, vol. 262(PB).
  • Handle: RePEc:eee:energy:v:262:y:2023:i:pb:s036054422202432x
    DOI: 10.1016/j.energy.2022.125546
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422202432X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.125546?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhong, Wenjun & Pachiannan, Tamilselvan & He, Zhixia & Xuan, Tiemin & Wang, Qian, 2019. "Experimental study of ignition, lift-off length and emission characteristics of diesel/hydrogenated catalytic biodiesel blends," Applied Energy, Elsevier, vol. 235(C), pages 641-652.
    2. Wei, Liangjie & Cheung, C.S. & Huang, Zuohua, 2014. "Effect of n-pentanol addition on the combustion, performance and emission characteristics of a direct-injection diesel engine," Energy, Elsevier, vol. 70(C), pages 172-180.
    3. Shang, Weiwei & He, Zhixia & Wang, Qian & Cao, Jiawei & Li, Bei & Leng, Xianyin & Tamilselvan, P. & Li, Da, 2018. "Experimental and analytical study on capture spray liquid penetration and combustion characteristics simultaneously with Hydrogenated Catalytic Biodiesel/Diesel blended fuel," Applied Energy, Elsevier, vol. 226(C), pages 947-956.
    4. Xuan, Tiemin & Sun, Zhongcheng & EL-Seesy, Ahmed I. & Mi, Yonggang & Zhong, Wenjun & He, Zhixia & Wang, Qian & Sun, Jianbing & El-Batsh, Hesham M. & Cao, Jiawei, 2021. "An optical study on spray and combustion characteristics of ternary hydrogenated catalytic biodiesel/methanol/n-octanol blends; part П: Liquid length and in-flame soot," Energy, Elsevier, vol. 227(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhong, Wenjun & Huang, Xinghan & Guo, Heng & Mahmoud, Nasreldin M. & Yan, Feibin & He, Zhixia & Wang, Qian & Wang, Jing, 2023. "Spray-evaporation characteristics of n-pentanol/n-dodecane binary fuel at ultra-high injection pressure," Renewable Energy, Elsevier, vol. 219(P2).
    2. Wei, Yi & Zhang, Zunhua & Zhou, Mengni & Yu, Weiping & Zhang, Xiangjie & Hu, Jiajia & Mi, Xiaoxiong & Li, Gesheng, 2024. "Effects of ambient pressures on cool flames in n-dodecane spray studied with laser diagnostics and large-eddy simulations," Energy, Elsevier, vol. 294(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Han, Kai & Lin, Qizhao & Liu, Minghou & Meng, Kesheng & Ni, Zhanshi & Liu, Yu & Tian, Junjian & Qiu, Zhicong, 2022. "Experimental study on the micro-explosion characteristics of biodiesel/1-pentanol and biodiesel/ methanol blended droplets," Renewable Energy, Elsevier, vol. 196(C), pages 261-277.
    2. Rafael R. Maes & Geert Potters & Erik Fransen & Rowan Van Schaeren & Silvia Lenaerts, 2022. "Influence of Adding Low Concentration of Oxygenates in Mineral Diesel Oil and Biodiesel on the Concentration of NO, NO 2 and Particulate Matter in the Exhaust Gas of a One-Cylinder Diesel Generator," IJERPH, MDPI, vol. 19(13), pages 1-18, June.
    3. Yesilyurt, Murat Kadir & Eryilmaz, Tanzer & Arslan, Mevlüt, 2018. "A comparative analysis of the engine performance, exhaust emissions and combustion behaviors of a compression ignition engine fuelled with biodiesel/diesel/1-butanol (C4 alcohol) and biodiesel/diesel/," Energy, Elsevier, vol. 165(PB), pages 1332-1351.
    4. Zhang, Zhi-Hui & Balasubramanian, Rajasekhar, 2016. "Investigation of particulate emission characteristics of a diesel engine fueled with higher alcohols/biodiesel blends," Applied Energy, Elsevier, vol. 163(C), pages 71-80.
    5. Raju, V. Dhana & Venu, Harish & Subramani, Lingesan & Kishore, P.S. & Prasanna, P.L. & Kumar, D. Vinay, 2020. "An experimental assessment of prospective oxygenated additives on the diverse characteristics of diesel engine powered with waste tamarind biodiesel," Energy, Elsevier, vol. 203(C).
    6. Liang, Zhirong & Yu, Zhenhong & Liu, Haoye & Chen, Longfei & Huang, Xinyan, 2022. "Combustion and emission characteristics of a compression ignition engine burning a wide range of conventional hydrocarbon and alternative fuels," Energy, Elsevier, vol. 250(C).
    7. Wei, L. & Cheung, C.S. & Ning, Z., 2018. "Effects of biodiesel-ethanol and biodiesel-butanol blends on the combustion, performance and emissions of a diesel engine," Energy, Elsevier, vol. 155(C), pages 957-970.
    8. Rajesh Kumar, B. & Saravanan, S., 2016. "Use of higher alcohol biofuels in diesel engines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 84-115.
    9. Loganathan, S. & Leenus Jesu Martin, M. & Nagalingam, B. & Prabhu, L., 2018. "Heat release rate and performance simulation of DME fuelled diesel engine using oxygenate correction factor and load correction factor in double Wiebe function," Energy, Elsevier, vol. 150(C), pages 77-91.
    10. Chu, Huaqiang & Han, Weiwei & Cao, Wenjian & Gu, Mingyan & Xu, Guangju, 2019. "Effect of methane addition to ethylene on the morphology and size distribution of soot in a laminar co-flow diffusion flame," Energy, Elsevier, vol. 166(C), pages 392-400.
    11. Xu, Min & Jiang, Peng & Zhong, Wenjun & Yan, Feibin & Liu, Xu & Wang, Qian, 2023. "Experimental investigation combined with steady-state and transient-state tests on soot characteristics of hydrogenated catalytic biodiesel/n-butanol blends," Energy, Elsevier, vol. 282(C).
    12. Yaoyao Ying & Chenxuan Xu & Dong Liu & Bo Jiang & Pengfei Wang & Wei Wang, 2017. "Nanostructure and Oxidation Reactivity of Nascent Soot Particles in Ethylene/Pentanol Flames," Energies, MDPI, vol. 10(1), pages 1-16, January.
    13. Haq, Muteeb ul & Jafry, Ali Turab & Ahmad, Saad & Cheema, Taqi Ahmad & Kamran, Muhammad & Ajab, Huma & Masjuki, Haji Hassan, 2023. "Macroscopic spray behavior in pressurized chamber alongside thermal performance of quaternary castor biodiesel with butanol and 1-butoxybutane," Energy, Elsevier, vol. 282(C).
    14. Ganesha Thippeshnaik & Sajjal Basanna Prakash & Ajith Bintravalli Suresh & Manjunath Patel Gowdru Chandrashekarappa & Olusegun David Samuel & Oguzhan Der & Ali Ercetin, 2023. "Experimental Investigation of Compression Ignition Engine Combustion, Performance, and Emission Characteristics of Ternary Blends with Higher Alcohols (1-Heptanol and n -Octanol)," Energies, MDPI, vol. 16(18), pages 1-25, September.
    15. Li, Li & Wang, Jianxin & Wang, Zhi & Liu, Haoye, 2015. "Combustion and emissions of compression ignition in a direct injection diesel engine fueled with pentanol," Energy, Elsevier, vol. 80(C), pages 575-581.
    16. Bifeng Yin & Bin Xu & Hekun Jia & Shenghao Yu, 2020. "The Effect of Elliptical Diesel Nozzles on Spray Liquid-Phase Penetration under Evaporative Conditions," Energies, MDPI, vol. 13(9), pages 1-14, May.
    17. Nadir Yilmaz & Alpaslan Atmanli & Matthew J. Hall & Francisco M. Vigil, 2022. "Determination of the Optimum Blend Ratio of Diesel, Waste Oil Derived Biodiesel and 1-Pentanol Using the Response Surface Method," Energies, MDPI, vol. 15(14), pages 1-16, July.
    18. Ashok, B. & Jeevanantham, A.K. & Nanthagopal, K. & Saravanan, B. & Senthil Kumar, M. & Johny, Ajith & Mohan, Aravind & Kaisan, Muhammad Usman & Abubakar, Shitu, 2019. "An experimental analysis on the effect of n-pentanol- Calophyllum Inophyllum Biodiesel binary blends in CI engine characteristcis," Energy, Elsevier, vol. 173(C), pages 290-305.
    19. Chen, Hao & Su, Xin & He, Jingjing & Zhang, Peng & Xu, Hongming & Zhou, Chenglong, 2021. "Investigation on combustion characteristics of cyclopentanol/diesel fuel blends in an optical engine," Renewable Energy, Elsevier, vol. 167(C), pages 811-829.
    20. M, Vinod Babu & K, Madhu Murthy & G, Amba Prasad Rao, 2017. "Butanol and pentanol: The promising biofuels for CI engines – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1068-1088.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:262:y:2023:i:pb:s036054422202432x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.