IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v262y2023ipbs0360544222023945.html
   My bibliography  Save this article

Using energy consumption constraints to control the freight transportation structure in China (2021–2030)

Author

Listed:
  • Zuo, Dajie
  • Liang, Qichen
  • Zhan, Shuguang
  • Huang, Wencheng
  • Yang, Shenglan
  • Wang, Mengyun

Abstract

China has formulated a series of energy-saving policies to combat climate change, including energy consumption limit to 6 billion tonnes of standard coal by 2030, thus controlling the energy consumption of freight transportation is crucial for achieving energy-saving goals. In this study, the annual control model for freight transportation structure adjustment (FTSA-AC model) was established from the perspectives of the target year prediction and intermediate year controlling to control energy consumption in the freight sector. Innovatively, an efficient algorithm was designed to solve the model and obtain the annual control plan of freight transportation structure adjustment in China (2021–2030). Accordingly, the national freight transportation structure will be continuously adjusted to the optimal state until 2027, and the freight turnover will be achieved at a steady growth rate of 1.50% from 2027 to 2030. The freight turnover will reach 22888.040 billion tonne-kilometres by 2030, in which railways, highways, waterways, and aviation would account for 18.92%, 30.20%, 50.76%, and 0.12%, respectively. According to the results, freight energy consumption will reach its peak in 2029, with 145 million tonnes of standard coal. Lastly, a series of reasonable policy recommendations were presented to provide a reference for energy-efficient freight transport development in China.

Suggested Citation

  • Zuo, Dajie & Liang, Qichen & Zhan, Shuguang & Huang, Wencheng & Yang, Shenglan & Wang, Mengyun, 2023. "Using energy consumption constraints to control the freight transportation structure in China (2021–2030)," Energy, Elsevier, vol. 262(PB).
  • Handle: RePEc:eee:energy:v:262:y:2023:i:pb:s0360544222023945
    DOI: 10.1016/j.energy.2022.125512
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222023945
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.125512?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Komor, Paul, 1995. "Reducing energy use in US freight transport," Transport Policy, Elsevier, vol. 2(2), pages 119-128, April.
    2. Zhang, Yue-Jun & Peng, Hua-Rong & Liu, Zhao & Tan, Weiping, 2015. "Direct energy rebound effect for road passenger transport in China: A dynamic panel quantile regression approach," Energy Policy, Elsevier, vol. 87(C), pages 303-313.
    3. Park, Jin Suk & Seo, Young-Joon & Ha, Min-Ho, 2019. "The role of maritime, land, and air transportation in economic growth: Panel evidence from OECD and non-OECD countries," Research in Transportation Economics, Elsevier, vol. 78(C).
    4. Yu, Yang & Li, Shuangqi & Sun, Huaping & Taghizadeh-Hesary, Farhad, 2021. "Energy carbon emission reduction of China’s transportation sector: An input–output approach," Economic Analysis and Policy, Elsevier, vol. 69(C), pages 378-393.
    5. Wang, Bo & Sun, Yefei & Chen, Qingxiang & Wang, Zhaohua, 2018. "Determinants analysis of carbon dioxide emissions in passenger and freight transportation sectors in China," Structural Change and Economic Dynamics, Elsevier, vol. 47(C), pages 127-132.
    6. Tone, Kaoru, 2002. "A slacks-based measure of super-efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 143(1), pages 32-41, November.
    7. Choi, Yongrok & Zhang, Ning & Zhou, P., 2012. "Efficiency and abatement costs of energy-related CO2 emissions in China: A slacks-based efficiency measure," Applied Energy, Elsevier, vol. 98(C), pages 198-208.
    8. Lee, Min-Kyu & Yoo, Seung-Hoon, 2016. "The role of transportation sectors in the Korean national economy: An input-output analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 93(C), pages 13-22.
    9. Neves, Sónia Almeida & Marques, António Cardoso, 2021. "The substitution of fossil fuels in the US transportation energy mix: Are emissions decoupling from economic growth?," Research in Transportation Economics, Elsevier, vol. 90(C).
    10. Zhu, Qingyuan & Li, Xingchen & Li, Feng & Wu, Jie & Zhou, Dequn, 2020. "Energy and environmental efficiency of China's transportation sectors under the constraints of energy consumption and environmental pollutions," Energy Economics, Elsevier, vol. 89(C).
    11. Chang, Young-Tae & Zhang, Ning & Danao, Denise & Zhang, Nan, 2013. "Environmental efficiency analysis of transportation system in China: A non-radial DEA approach," Energy Policy, Elsevier, vol. 58(C), pages 277-283.
    12. Cui, Qi & He, Ling & Liu, Yu & Zheng, Yanting & Wei, Wei & Yang, Bo & Zhou, Meifang, 2021. "The impacts of COVID-19 pandemic on China’s transport sectors based on the CGE model coupled with a decomposition analysis approach," Transport Policy, Elsevier, vol. 103(C), pages 103-115.
    13. Ülengin, Füsun & Işık, Mine & Ekici, Şule Önsel & Özaydın, Özay & Kabak, Özgür & Topçu, Y. İlker, 2018. "Policy developments for the reduction of climate change impacts by the transportation sector," Transport Policy, Elsevier, vol. 61(C), pages 36-50.
    14. Tian, Yihui & Zhu, Qinghua & Lai, Kee-hung & Venus Lun, Y.H., 2014. "Analysis of greenhouse gas emissions of freight transport sector in China," Journal of Transport Geography, Elsevier, vol. 40(C), pages 43-52.
    15. Saaty, Thomas L., 1990. "How to make a decision: The analytic hierarchy process," European Journal of Operational Research, Elsevier, vol. 48(1), pages 9-26, September.
    16. Chen, Jun, 2021. "High-speed rail and energy consumption in China: The intermediary roles of industry and technology," Energy, Elsevier, vol. 230(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Mingyang & Tang, Jinjun, 2023. "Simulation-based optimization considering energy consumption for assisted station locations to enhance flex-route transit," Energy, Elsevier, vol. 277(C).
    2. Huifang E & Shuangjie Li & Liming Wang & Huidan Xue, 2023. "The Impact of ICT Capital Services on Economic Growth and Energy Efficiency in China," Energies, MDPI, vol. 16(9), pages 1-21, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei, Wei & Hu, Haiqing & Chang, Chun-Ping, 2022. "Why the same degree of economic policy uncertainty can produce different outcomes in energy efficiency? New evidence from China," Structural Change and Economic Dynamics, Elsevier, vol. 60(C), pages 467-481.
    2. Zhao, Pengjun & Zeng, Liangen & Li, Peilin & Lu, Haiyan & Hu, Haoyu & Li, Chengming & Zheng, Mengyuan & Li, Haitao & Yu, Zhao & Yuan, Dandan & Xie, Jinxin & Huang, Qi & Qi, Yuting, 2022. "China's transportation sector carbon dioxide emissions efficiency and its influencing factors based on the EBM DEA model with undesirable outputs and spatial Durbin model," Energy, Elsevier, vol. 238(PC).
    3. Satoshi Honma, 2015. "Does international trade improve environmental efficiency? An application of a super slacks-based measure of efficiency," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 4(1), pages 1-12, December.
    4. Cabrera-Jiménez, Richard & Mateo-Sanz, Josep M. & Gavaldà, Jordi & Jiménez, Laureano & Pozo, Carlos, 2022. "Comparing biofuels through the lens of sustainability: A data envelopment analysis approach," Applied Energy, Elsevier, vol. 307(C).
    5. Xiaodong Chen & Anda Guo & Jiahao Zhu & Fang Wang & Yanqiu He, 2022. "Accessing performance of transport sector considering risks of climate change and traffic accidents: joint bounded-adjusted measure and Luenberger decomposition," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(1), pages 115-138, March.
    6. Li, Feng & Zhang, Danlu & Zhang, Jinyu & Kou, Gang, 2022. "Measuring the energy production and utilization efficiency of Chinese thermal power industry with the fixed-sum carbon emission constraint," International Journal of Production Economics, Elsevier, vol. 252(C).
    7. Lin, Boqiang & Wang, Xiaolei, 2015. "Carbon emissions from energy intensive industry in China: Evidence from the iron & steel industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 746-754.
    8. Zhou, Haibo & Yang, Yi & Chen, Yao & Zhu, Joe, 2018. "Data envelopment analysis application in sustainability: The origins, development and future directions," European Journal of Operational Research, Elsevier, vol. 264(1), pages 1-16.
    9. Wei Wang & Hualin Xie & Tong Jiang & Daobei Zhang & Xue Xie, 2016. "Measuring the Total-Factor Carbon Emission Performance of Industrial Land Use in China Based on the Global Directional Distance Function and Non-Radial Luenberger Productivity Index," Sustainability, MDPI, vol. 8(4), pages 1-19, April.
    10. Usman Akbar & Muhammad Asif Khan & Marryum Akmal & Éva Zsuzsanna Tóth Naárné & Judit Oláh, 2020. "Trade-Offs for the Optimal Energy Efficiency of Road Transportation: Domestic Cases in Developing Countries," Energies, MDPI, vol. 13(24), pages 1-14, December.
    11. Ying Li & Yung-Ho Chiu & Liang Chun Lu, 2018. "Regional Energy, CO 2 , and Economic and Air Quality Index Performances in China: A Meta-Frontier Approach," Energies, MDPI, vol. 11(8), pages 1-20, August.
    12. Li, Jianglong & Lin, Boqiang, 2017. "Ecological total-factor energy efficiency of China's heavy and light industries: Which performs better?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 83-94.
    13. Long, Xingle & Wu, Chao & Zhang, Jijian & Zhang, Jing, 2018. "Environmental efficiency for 192 thermal power plants in the Yangtze River Delta considering heterogeneity: A metafrontier directional slacks-based measure approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3962-3971.
    14. Xian’En Wang & Shimeng Wang & Xipan Wang & Wenbo Li & Junnian Song & Haiyan Duan & Shuo Wang, 2019. "The Assessment of Carbon Performance under the Region-Sector Perspective based on the Nonparametric Estimation: A Case Study of the Northern Province in China," Sustainability, MDPI, vol. 11(21), pages 1-23, October.
    15. Josef Jablonsky, 2012. "Multicriteria approaches for ranking of efficient units in DEA models," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 20(3), pages 435-449, September.
    16. Zhang, Ning & Wei, Xiao, 2015. "Dynamic total factor carbon emissions performance changes in the Chinese transportation industry," Applied Energy, Elsevier, vol. 146(C), pages 409-420.
    17. Miaomiao Tao & Pierre Failler & Lim Thye Goh & Wee Yeap Lau & Hanghang Dong & Liang Xie, 2022. "Quantify the Effect of China’s Emission Trading Scheme on Low-carbon Eco-efficiency: Evidence from China’s 283 Cities," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(6), pages 1-33, August.
    18. Li, Tao & Yang, Wenyue & Zhang, Haoran & Cao, Xiaoshu, 2016. "Evaluating the impact of transport investment on the efficiency of regional integrated transport systems in China," Transport Policy, Elsevier, vol. 45(C), pages 66-76.
    19. Ping Wang & Bangzhu Zhu & Xueping Tao & Rui Xie, 2017. "Measuring regional energy efficiencies in China: a meta-frontier SBM-Undesirable approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(2), pages 793-809, January.
    20. Rashidi, Kamran & Cullinane, Kevin, 2019. "Evaluating the sustainability of national logistics performance using Data Envelopment Analysis," Transport Policy, Elsevier, vol. 74(C), pages 35-46.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:262:y:2023:i:pb:s0360544222023945. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.