IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v309y2024ics0360544224028445.html
   My bibliography  Save this article

An IMFO-LSTM_BIGRU combined network for long-term multiple battery states prediction for electric vehicles

Author

Listed:
  • Wang, Zhuoer
  • Zhang, Hongjuan
  • Li, Bijun
  • Fan, Xiaoyi
  • Ma, Zhenqiang
  • Zhou, Jian

Abstract

Predicting the state of power batteries is crucial for ensuring the safe and reliable operation of electric vehicles. However, accurately forecasting multiple battery parameters under full operating conditions remains challenging. Traditional prediction models struggle to accurately represent the actual battery behavior due to irregular vehicle driving patterns. Furthermore, long-term prediction of battery states, essential for potential fault diagnosis, poses significant difficulties for conventional neural networks. To address the issue of error accumulation in recurrent neural networks (RNNs) during multi-parameter battery prediction across various operating conditions, we propose a combined model featuring multi-level feature extraction. This model integrates Long Short-Term Memory (LSTM) and Bidirectional Gated Recurrent Unit (BiGRU) networks, where the LSTM layer employs forget gates to filter out unnecessary data while preserving valuable information. The bidirectional update gate in the BiGRU layer effectively combines historical and future data to enhance time series modeling. This comprehensive approach improves sequence modeling efficiency, thereby increasing reliability. However, the multi-level feature extraction structure introduces higher-dimensional hyperparameters, complicating the optimization process. To maintain prediction accuracy across multiple battery parameters, we propose an improved moth-flame optimization (IMFO) algorithm to optimize the complex hyperparameters of the LSTM_BiGRU model. Extensive experiments conducted on a real-world vehicle dataset demonstrate that the IMFO-LSTM_BiGRU combined network surpasses existing state-of-the-art methods in terms of accuracy and stability.

Suggested Citation

  • Wang, Zhuoer & Zhang, Hongjuan & Li, Bijun & Fan, Xiaoyi & Ma, Zhenqiang & Zhou, Jian, 2024. "An IMFO-LSTM_BIGRU combined network for long-term multiple battery states prediction for electric vehicles," Energy, Elsevier, vol. 309(C).
  • Handle: RePEc:eee:energy:v:309:y:2024:i:c:s0360544224028445
    DOI: 10.1016/j.energy.2024.133069
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224028445
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133069?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Rui & Liu, Hui & Nie, Shida & Han, Lijin & Yang, Ningkang, 2023. "A hierarchical eco-driving strategy for hybrid electric vehicles via vehicle-to-cloud connectivity," Energy, Elsevier, vol. 281(C).
    2. Huixing Meng & Qiaoqiao Yang & Enrico Zio & Jinduo Xing, 2023. "An integrated methodology for dynamic risk prediction of thermal runaway in lithium-ion batteries," Post-Print hal-04103786, HAL.
    3. Zuo, Dajie & Liang, Qichen & Zhan, Shuguang & Huang, Wencheng & Yang, Shenglan & Wang, Mengyun, 2023. "Using energy consumption constraints to control the freight transportation structure in China (2021–2030)," Energy, Elsevier, vol. 262(PB).
    4. Hong, Jichao & Wang, Zhenpo & Yao, Yongtao, 2019. "Fault prognosis of battery system based on accurate voltage abnormity prognosis using long short-term memory neural networks," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    5. Wang, Shunli & Takyi-Aninakwa, Paul & Jin, Siyu & Yu, Chunmei & Fernandez, Carlos & Stroe, Daniel-Ioan, 2022. "An improved feedforward-long short-term memory modeling method for the whole-life-cycle state of charge prediction of lithium-ion batteries considering current-voltage-temperature variation," Energy, Elsevier, vol. 254(PA).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Chuan & Zhang, Huahua & Ding, Ping & Yang, Shuai & Bai, Yun, 2023. "Deep feature extraction in lifetime prognostics of lithium-ion batteries: Advances, challenges and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    2. Shi, Haotian & Wang, Shunli & Huang, Qi & Fernandez, Carlos & Liang, Jianhong & Zhang, Mengyun & Qi, Chuangshi & Wang, Liping, 2024. "Improved electric-thermal-aging multi-physics domain coupling modeling and identification decoupling of complex kinetic processes based on timescale quantification in lithium-ion batteries," Applied Energy, Elsevier, vol. 353(PB).
    3. Peng Song & Zhisheng Zhang, 2023. "Research on Multiple Load Short-Term Forecasting Model of Integrated Energy Distribution System Based on Mogrifier-Quantum Weighted MELSTM," Energies, MDPI, vol. 16(9), pages 1-13, April.
    4. Cui, Binghan & Wang, Han & Li, Renlong & Xiang, Lizhi & Zhao, Huaian & Xiao, Rang & Li, Sai & Liu, Zheng & Yin, Geping & Cheng, Xinqun & Ma, Yulin & Huo, Hua & Zuo, Pengjian & Lu, Taolin & Xie, Jingyi, 2024. "Ultra-early prediction of lithium-ion battery performance using mechanism and data-driven fusion model," Applied Energy, Elsevier, vol. 353(PA).
    5. Ma, Zhikai & Huo, Qian & Wang, Wei & Zhang, Tao, 2023. "Voltage-temperature aware thermal runaway alarming framework for electric vehicles via deep learning with attention mechanism in time-frequency domain," Energy, Elsevier, vol. 278(C).
    6. Choon Kit Chan & Chi Hong Chung & Jeyagopi Raman, 2023. "Optimizing Thermal Management System in Electric Vehicle Battery Packs for Sustainable Transportation," Sustainability, MDPI, vol. 15(15), pages 1-14, August.
    7. Yang, Jian & Zhang, Tiezhu & Hong, Jichao & Zhang, Hongxin & Zhao, Qinghai & Meng, Zewen, 2021. "Research on driving control strategy and Fuzzy logic optimization of a novel mechatronics-electro-hydraulic power coupling electric vehicle," Energy, Elsevier, vol. 233(C).
    8. Ta, Yuntian & Li, Yanfeng & Cai, Wenan & Zhang, Qianqian & Wang, Zhijian & Dong, Lei & Du, Wenhua, 2023. "Adaptive staged remaining useful life prediction method based on multi-sensor and multi-feature fusion," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    9. Zhijie Duan & Luo Zhang & Lili Feng & Shuguang Yu & Zengyou Jiang & Xiaoming Xu & Jichao Hong, 2021. "Research on Economic and Operating Characteristics of Hydrogen Fuel Cell Cars Based on Real Vehicle Tests," Energies, MDPI, vol. 14(23), pages 1-19, November.
    10. Daniels, Rojo Kurian & Kumar, Vikas & Chouhan, Satyendra Singh & Prabhakar, Aneesh, 2024. "Thermal runaway fault prediction in air-cooled lithium-ion battery modules using machine learning through temperature sensors placement optimization," Applied Energy, Elsevier, vol. 355(C).
    11. Wang, Fu-Kwun & Kebede, Getnet Awoke & Lo, Shih-Che & Woldegiorgis, Bereket Haile, 2024. "An embedding layer-based quantum long short-term memory model with transfer learning for proton exchange membrane fuel stack remaining useful life prediction," Energy, Elsevier, vol. 308(C).
    12. Takyi-Aninakwa, Paul & Wang, Shunli & Zhang, Hongying & Yang, Xiaoyong & Fernandez, Carlos, 2022. "An optimized long short-term memory-weighted fading extended Kalman filtering model with wide temperature adaptation for the state of charge estimation of lithium-ion batteries," Applied Energy, Elsevier, vol. 326(C).
    13. Qi, Kaijian & Zhang, Weigang & Zhou, Wei & Cheng, Jifu, 2022. "Integrated battery power capability prediction and driving torque regulation for electric vehicles: A reduced order MPC approach," Applied Energy, Elsevier, vol. 317(C).
    14. He, Qijiao & Li, Zheng & Zhao, Dongqi & Yu, Jie & Tan, Peng & Guo, Meiting & Liao, Tianjun & Zhao, Tianshou & Ni, Meng, 2023. "A 3D modelling study on all vanadium redox flow battery at various operating temperatures," Energy, Elsevier, vol. 282(C).
    15. Tan, Jiawei & Chen, Xingyu & Bu, Yang & Wang, Feng & Wang, Jialing & Huang, Xianan & Hu, Zhenda & Liu, Lin & Lin, Changzhui & Meng, Chao & Lin, Jian & Xie, Shan & Xu, Jinmei & Jing, Rui & Zhao, Yingru, 2024. "Incorporating FFTA based safety assessment of lithium-ion battery energy storage systems in multi-objective optimization for integrated energy systems," Applied Energy, Elsevier, vol. 367(C).
    16. Wei, Yupeng & Wu, Dazhong, 2023. "Prediction of state of health and remaining useful life of lithium-ion battery using graph convolutional network with dual attention mechanisms," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    17. Liu, Zixi & Ruan, Guanqiang & Tian, Yupeng & Hu, Xing & Yan, Rong & Yang, Kuo, 2024. "A real-world battery state of charge prediction method based on a lightweight mixer architecture," Energy, Elsevier, vol. 311(C).
    18. Sun, Chenhao & Zhou, Zhuoyu & Zeng, Xiangjun & Li, Zewen & Wang, Yuanyuan & Deng, Feng, 2022. "A multi-model-integration-based prediction methodology for the spatiotemporal distribution of vulnerabilities in integrated energy systems under the multi-type, imbalanced, and dependent input data sc," Applied Energy, Elsevier, vol. 320(C).
    19. Li, Lin & Zhang, Tiezhu & Lu, Liqun & Zhang, Hongxin & Yang, Jian & Zhang, Zhen, 2023. "An energy active regulation management strategy based on driving mode recognition for electro-hydraulic hybrid vehicles," Energy, Elsevier, vol. 285(C).
    20. Liu, Yang & Zhang, Caiping & Jiang, Jiuchun & Zhang, Linjing & Zhang, Weige & Lao, Li & Yang, Shichun, 2023. "A 3D distributed circuit-electrochemical model for the inner inhomogeneity of lithium-ion battery," Applied Energy, Elsevier, vol. 331(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:309:y:2024:i:c:s0360544224028445. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.