IDEAS home Printed from https://ideas.repec.org/a/spr/cejnor/v20y2012i3p435-449.html
   My bibliography  Save this article

Multicriteria approaches for ranking of efficient units in DEA models

Author

Listed:
  • Josef Jablonsky

Abstract

Data envelopment analysis models usually split decision making units into two basic groups, efficient and inefficient. Efficiency score of inefficient units allows their ranking but efficient units cannot be ranked directly because of their maximum efficiency. That is why there are formulated several models for ranking of efficient units. The paper presents two original models for ranking of efficient units in data envelopment analysis—they are based on multiple criteria decision making techniques—goal programming and analytic hierarchy process. The first model uses goal programming methodology and minimizes either the sum of undesirable deviations or maximal undesirable deviation from the efficient frontier. The second approach is analytic hierarchy process model for ranking of efficient units. The two presented models are compared with several super-efficiency models and other approaches for ranking decision making units in DEA models including definitions based on distances from optimistic and pessimistic envelopes and cross efficiency evaluation models. The results of the analysis by all presented models are illustrated on a real data set—evaluation of 194 bank branches of one of the Czech commercial banks. Copyright Springer-Verlag 2012

Suggested Citation

  • Josef Jablonsky, 2012. "Multicriteria approaches for ranking of efficient units in DEA models," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 20(3), pages 435-449, September.
  • Handle: RePEc:spr:cejnor:v:20:y:2012:i:3:p:435-449
    DOI: 10.1007/s10100-011-0223-6
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10100-011-0223-6
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10100-011-0223-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Per Andersen & Niels Christian Petersen, 1993. "A Procedure for Ranking Efficient Units in Data Envelopment Analysis," Management Science, INFORMS, vol. 39(10), pages 1261-1264, October.
    2. Mikuláš Luptáčik & Bernhard Böhm, 2010. "Efficiency analysis of a multisectoral economic system," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 18(4), pages 609-619, December.
    3. Y M Wang & K S Chin & J B Yang, 2007. "Measuring the performances of decision-making units using geometric average efficiency," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(7), pages 929-937, July.
    4. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    5. Saaty, Thomas L., 1990. "How to make a decision: The analytic hierarchy process," European Journal of Operational Research, Elsevier, vol. 48(1), pages 9-26, September.
    6. Adler, Nicole & Friedman, Lea & Sinuany-Stern, Zilla, 2002. "Review of ranking methods in the data envelopment analysis context," European Journal of Operational Research, Elsevier, vol. 140(2), pages 249-265, July.
    7. F. Hosseinzadeh Lotfi & A. Noora & G. Jahanshahloo & J. Jablonsky & M. Mozaffari & J. Gerami, 2009. "An MOLP based procedure for finding efficient units in DEA models," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 17(1), pages 1-11, March.
    8. Green, Rodney H. & Doyle, John R. & Cook, Wade D., 1996. "Preference voting and project ranking using DEA and cross-evaluation," European Journal of Operational Research, Elsevier, vol. 90(3), pages 461-472, May.
    9. Tone, Kaoru, 2002. "A slacks-based measure of super-efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 143(1), pages 32-41, November.
    10. Tone, Kaoru, 2001. "A slacks-based measure of efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 130(3), pages 498-509, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kang, Hee Jay & Kim, Changhee & Choi, Kanghwa, 2024. "Combining bootstrap data envelopment analysis with social networks for rank discrimination and suitable potential benchmarks," European Journal of Operational Research, Elsevier, vol. 312(1), pages 283-297.
    2. Natawat Jatuphatwarodom & Dylan F. Jones & Djamila Ouelhadj, 2018. "A mixed-model multi-objective analysis of strategic supply chain decision support in the Thai silk industry," Annals of Operations Research, Springer, vol. 267(1), pages 221-247, August.
    3. Janko Seljak & Andreja Kvas, 2015. "Three-Stage Data Envelopment Analysis as a Tool for Nurse Leader Performance Appraisals," SAGE Open, , vol. 5(1), pages 21582440155, March.
    4. Vladimír Holý & Karel Šafr, 2018. "Are economically advanced countries more efficient in basic and applied research?," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 26(4), pages 933-950, December.
    5. Constantin Zopounidis & Michael Doumpos, 2013. "Multicriteria decision systems for financial problems," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(2), pages 241-261, July.
    6. Josef Jablonsky & Petr Fiala, 2012. "Special issue of the Czech Society for Operations Research," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 20(3), pages 367-368, September.
    7. Aquila, Giancarlo & Souza Rocha, Luiz Célio & Rotela Junior, Paulo & Saab Junior, Joseph Youssif & de Sá Brasil Lima, João & Balestrassi, Pedro Paulo, 2020. "Economic planning of wind farms from a NBI-RSM-DEA multiobjective programming," Renewable Energy, Elsevier, vol. 158(C), pages 628-641.
    8. Josef Jablonsky, 2018. "Ranking of countries in sporting events using two-stage data envelopment analysis models: a case of Summer Olympic Games 2016," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 26(4), pages 951-966, December.
    9. Vicente J. Bolós & Rafael Benítez & Vicente Coll-Serrano, 2023. "Continuous models combining slacks-based measures of efficiency and super-efficiency," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 31(2), pages 363-391, June.
    10. Maryam Bagherikahvarin & Yves Smet, 2017. "Determining new possible weight values in PROMETHEE: a procedure based on data envelopment analysis," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(5), pages 484-495, May.
    11. Martin Branda & Miloš Kopa, 2014. "On relations between DEA-risk models and stochastic dominance efficiency tests," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 22(1), pages 13-35, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fang, Tao & Fang, Debin & Yu, Bolin, 2022. "Carbon emission efficiency of thermal power generation in China: Empirical evidence from the micro-perspective of power plants," Energy Policy, Elsevier, vol. 165(C).
    2. Mushtaq Taleb & Ruzelan Khalid & Ali Emrouznejad & Razamin Ramli, 2023. "Environmental efficiency under weak disposability: an improved super efficiency data envelopment analysis model with application for assessment of port operations considering NetZero," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(7), pages 6627-6656, July.
    3. Lampe, Hannes W. & Hilgers, Dennis, 2015. "Trajectories of efficiency measurement: A bibliometric analysis of DEA and SFA," European Journal of Operational Research, Elsevier, vol. 240(1), pages 1-21.
    4. Karima Kourtit & Peter Nijkamp, 2013. "In Search of Creative Champions in High-Tech Spaces," Tinbergen Institute Discussion Papers 13-193/VIII, Tinbergen Institute.
    5. Soltanifar, Mehdi & Shahghobadi, Saeid, 2013. "Selecting a benevolent secondary goal model in data envelopment analysis cross-efficiency evaluation by a voting model," Socio-Economic Planning Sciences, Elsevier, vol. 47(1), pages 65-74.
    6. Rafael Benítez & Vicente Coll-Serrano & Vicente J. Bolós, 2021. "deaR-Shiny: An Interactive Web App for Data Envelopment Analysis," Sustainability, MDPI, vol. 13(12), pages 1-19, June.
    7. Li, Yongjun & Xie, Jianhui & Wang, Meiqiang & Liang, Liang, 2016. "Super efficiency evaluation using a common platform on a cooperative game," European Journal of Operational Research, Elsevier, vol. 255(3), pages 884-892.
    8. Jiyoung Lee & Gyunghyun Choi, 2019. "A Dominance-Based Network Method for Ranking Efficient Decision-Making Units in Data Envelopment Analysis," Sustainability, MDPI, vol. 11(7), pages 1-20, April.
    9. Büschken, Joachim, 2009. "When does data envelopment analysis outperform a naïve efficiency measurement model?," European Journal of Operational Research, Elsevier, vol. 192(2), pages 647-657, January.
    10. Ruijing Zheng & Yu Cheng & Haimeng Liu & Wei Chen & Xiaodong Chen & Yaping Wang, 2022. "The Spatiotemporal Distribution and Drivers of Urban Carbon Emission Efficiency: The Role of Technological Innovation," IJERPH, MDPI, vol. 19(15), pages 1-22, July.
    11. Vicente J. Bolós & Rafael Benítez & Vicente Coll-Serrano, 2023. "Continuous models combining slacks-based measures of efficiency and super-efficiency," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 31(2), pages 363-391, June.
    12. Yung-ho Chiu & Chin-wei Huang & Chung-te Ting, 2012. "A non-radial measure of different systems for Taiwanese tourist hotels’ efficiency assessment," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 20(1), pages 45-63, March.
    13. Zhen Shi & Huinan Huang & Yingju Wu & Yung-Ho Chiu & Shijiong Qin, 2020. "Climate Change Impacts on Agricultural Production and Crop Disaster Area in China," IJERPH, MDPI, vol. 17(13), pages 1-23, July.
    14. Tran, Trung Hieu & Mao, Yong & Nathanail, Paul & Siebers, Peer-Olaf & Robinson, Darren, 2019. "Integrating slacks-based measure of efficiency and super-efficiency in data envelopment analysis," Omega, Elsevier, vol. 85(C), pages 156-165.
    15. Soushi Suzuki & Karima Kourtit & Peter Nijkamp, 2017. "The robustness of performance rankings of Asia-Pacific super cities," Asia-Pacific Journal of Regional Science, Springer, vol. 1(1), pages 219-242, April.
    16. Kourtit Karima & Nijkamp Peter & Suzuki Soushi, 2016. "New Urban Economic Agents: A Comparative Analysis of High-Performance New Entrepreneurs," Quaestiones Geographicae, Sciendo, vol. 35(4), pages 5-22, December.
    17. Du, Juan & Chen, Chien-Ming & Chen, Yao & Cook, Wade D. & Zhu, Joe, 2012. "Additive super-efficiency in integer-valued data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 218(1), pages 186-192.
    18. Zhu, Ning & Hougaard, Jens Leth & Yu, Zhiqian & Wang, Bing, 2020. "Ranking Chinese commercial banks based on their expected impact on structural efficiency," Omega, Elsevier, vol. 94(C).
    19. Ruomeng Zhou & Yunsheng Zhang, 2023. "Measurement of Urban Green Total Factor Productivity and Analysis of Its Temporal and Spatial Evolution in China," Sustainability, MDPI, vol. 15(12), pages 1-32, June.
    20. Soushi Suzuki & Peter Nijkamp & Piet Rietveld, 2012. "A preference allocation-DFM model in Data Envelopment Analysis -An application to Energy-Environment-Economic efficiency in Japan-," ERSA conference papers ersa12p332, European Regional Science Association.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:cejnor:v:20:y:2012:i:3:p:435-449. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.