IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v256y2022ics0360544222015869.html
   My bibliography  Save this article

Combustion and emission performance of isopropanol-butanol-ethanol (IBE) mixed with diesel fuel on marine diesel engine with nano YSZ thermal barrier coating

Author

Listed:
  • Fei, Chunguang
  • Qian, Zuoqin
  • Yang, Ziming
  • Ren, Jie
  • Zhu, Siwei
  • Yan, Yanan
  • Shu, Zihao

Abstract

The effect of piston coating on the combustion and emission performance of IBE and diesel blended fuel was experimental studied. The experimental conditions were set to be a orthogonal matrix of three loads from low to high, coated and uncoated, IBE20 fuel and D100 fuel. The heat release rate, ignition delay periods and combustion duration were calculated by the cylinder pressure curves. The break thermal efficiency was calculated by the fuel consumption rate, and the concentration of soot, NOx and CO in the exhaust was collected. It was found that Nano-YSZ thermal barrier coating (TBC) can effectively reduce heat transfer loss, increase in-cylinder combustion temperature, and effectively solve the problems of high latent heat of vaporization and ignition delay of alcohol fuel. The experimental results showed that the Nano-YSZ coating could effectively reduce the brake specific fuel consumption, which was reduced by 5% when using pure diesel under 25% load, and was reduced by 7.3% for IBE20 fuel. Furthermore, TBC_IBE20 (IBE20 used in TBC Engine) exhibited the highest thermal efficiency under the three working conditions. Under all operating conditions, IBE20 had the potential to reduce soot emissions but increase NOx emissions, and thermal barrier coatings could amplify this potential.

Suggested Citation

  • Fei, Chunguang & Qian, Zuoqin & Yang, Ziming & Ren, Jie & Zhu, Siwei & Yan, Yanan & Shu, Zihao, 2022. "Combustion and emission performance of isopropanol-butanol-ethanol (IBE) mixed with diesel fuel on marine diesel engine with nano YSZ thermal barrier coating," Energy, Elsevier, vol. 256(C).
  • Handle: RePEc:eee:energy:v:256:y:2022:i:c:s0360544222015869
    DOI: 10.1016/j.energy.2022.124683
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222015869
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.124683?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Yuanxu & Ning, Zhi & Lee, Chia-fon F. & Yan, Junhao & Lee, Timothy H., 2019. "Effect of acetone-butanol-ethanol (ABE)–gasoline blends on regulated and unregulated emissions in spark-ignition engine," Energy, Elsevier, vol. 168(C), pages 1157-1167.
    2. Li, Gang & Lee, Timothy H. & Liu, Zhien & Lee, Chiafon F. & Zhang, Chunhua, 2019. "Effects of injection strategies on combustion and emission characteristics of a common-rail diesel engine fueled with isopropanol-butanol-ethanol and diesel blends," Renewable Energy, Elsevier, vol. 130(C), pages 677-686.
    3. Trindade, Wagner Roberto da Silva & Santos, Rogério Gonçalves dos, 2017. "Review on the characteristics of butanol, its production and use as fuel in internal combustion engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 642-651.
    4. Erdoğan, Sinan & Aydın, Selman & Balki, Mustafa Kemal & Sayin, Cenk, 2020. "Operational evaluation of thermal barrier coated diesel engine fueled with biodiesel/diesel blend by using MCDM method base on engine performance, emission and combustion characteristics," Renewable Energy, Elsevier, vol. 151(C), pages 698-706.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Rui & Liu, Dong, 2022. "Temperature dependence of chemical effects of ethanol and dimethyl ether mixing on benzene and PAHs formation in ethylene counter-flow diffusion flames," Energy, Elsevier, vol. 257(C).
    2. EL-Seesy, Ahmed I. & Hassan, Hamdy, 2019. "Investigation of the effect of adding graphene oxide, graphene nanoplatelet, and multiwalled carbon nanotube additives with n-butanol-Jatropha methyl ester on a diesel engine performance," Renewable Energy, Elsevier, vol. 132(C), pages 558-574.
    3. Michał Wojcieszyk & Lotta Knuutila & Yuri Kroyan & Mário de Pinto Balsemão & Rupali Tripathi & Juha Keskivali & Anna Karvo & Annukka Santasalo-Aarnio & Otto Blomstedt & Martti Larmi, 2021. "Performance of Anisole and Isobutanol as Gasoline Bio-Blendstocks for Spark Ignition Engines," Sustainability, MDPI, vol. 13(16), pages 1-19, August.
    4. Mourad, M. & Mahmoud, K., 2019. "Investigation into SI engine performance characteristics and emissions fuelled with ethanol/butanol-gasoline blends," Renewable Energy, Elsevier, vol. 143(C), pages 762-771.
    5. Yangxun Liu & Weinan Liu & Huihong Liao & Wenhua Zhou & Cangsu Xu, 2021. "An Experimental and Kinetic Modelling Study on Laminar Premixed Flame Characteristics of Ethanol/Acetone Mixtures," Energies, MDPI, vol. 14(20), pages 1-18, October.
    6. Meng, Xiangyu & Zhou, Yihui & Yang, Tianhao & Long, Wuqiang & Bi, Mingshu & Tian, Jiangping & Lee, Chia-Fon F., 2020. "An experimental investigation of a dual-fuel engine by using bio-fuel as the additive," Renewable Energy, Elsevier, vol. 147(P1), pages 2238-2249.
    7. Majidian, Parastoo & Tabatabaei, Meisam & Zeinolabedini, Mehrshad & Naghshbandi, Mohammad Pooya & Chisti, Yusuf, 2018. "Metabolic engineering of microorganisms for biofuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3863-3885.
    8. Chiet Choo, Edwin Jia & Cheng, Xinwei & Scribano, Gianfranco & Ng, Hoon Kiat & Gan, Suyin, 2023. "Numerical investigation on the temporal and quasi-steady state soot characteristics of n-dodecane-n-butanol spray combustion," Energy, Elsevier, vol. 268(C).
    9. Rai, Ranjeet Kumar & Sahoo, Rashmi Rekha, 2019. "Effective power and effective power density analysis for water in diesel emulsion as fuel in diesel engine performance," Energy, Elsevier, vol. 180(C), pages 893-902.
    10. Nguyen, Dinh Duc & Moghaddam, Hesam & Pirouzfar, Vahid & Fayyazbakhsh, Ahmad & Su, Chia-Hung, 2021. "Improving the gasoline properties by blending butanol-Al2O3 to optimize the engine performance and reduce air pollution," Energy, Elsevier, vol. 218(C).
    11. Galloni, E. & Scala, F. & Fontana, G., 2019. "Influence of fuel bio-alcohol content on the performance of a turbo-charged, PFI, spark-ignition engine," Energy, Elsevier, vol. 170(C), pages 85-92.
    12. EL-Seesy, Ahmed I. & Kayatas, Zafer & Hawi, Meshack & Kosaka, Hidenori & He, Zhixia, 2020. "Combustion and emission characteristics of a rapid compression-expansion machine operated with N-heptanol-methyl oleate biodiesel blends," Renewable Energy, Elsevier, vol. 147(P1), pages 2064-2076.
    13. Hossain, Abul K. & Sharma, Vikas & Ahmad, Gulzar & Awotwe, Tabbi, 2023. "Energy outputs and emissions of biodiesels as a function of coolant temperature and composition," Renewable Energy, Elsevier, vol. 215(C).
    14. Han, Jinlin & Bao, Hesheng & Somers, L.M.T., 2021. "Experimental investigation of reactivity controlled compression ignition with n-butanol/n-heptane in a heavy-duty diesel engine," Applied Energy, Elsevier, vol. 282(PA).
    15. Kumar, A. Naresh & Kishore, P.S. & Raju, K. Brahma & Ashok, B. & Vignesh, R. & Jeevanantham, A.K. & Nanthagopal, K. & Tamilvanan, A., 2020. "Decanol proportional effect prediction model as additive in palm biodiesel using ANN and RSM technique for diesel engine," Energy, Elsevier, vol. 213(C).
    16. Das, Amar Kumar & Sahu, Santosh Kumar & Panda, Achyut Kumar, 2022. "Current status and prospects of alternate liquid transportation fuels in compression ignition engines: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    17. Vargün, Mustafa & Özsezen, Ahmet Necati, 2023. "Evaluation of the effect of the fuel injection phase on the combustion and exhaust characteristics in a diesel engine operating with alcohol-diesel mixtures," Energy, Elsevier, vol. 270(C).
    18. Liu, Jingyun & Fan, Senqing & Bai, Ke & Xiao, Zeyi, 2021. "Combining acetone-butanol-ethanol production and methyl orange decolorization in wastewater by fermentation with solid food waste as substrate," Renewable Energy, Elsevier, vol. 179(C), pages 2246-2255.
    19. Sekoai, Patrick T. & Ghimire, Anish & Ezeokoli, Obinna T. & Rao, Subramanya & Ngan, Wing Y. & Habimana, Olivier & Yao, Yuan & Yang, Pu & Yiu Fung, Aster Hei & Yoro, Kelvin O. & Daramola, Michael O. & , 2021. "Valorization of volatile fatty acids from the dark fermentation waste Streams-A promising pathway for a biorefinery concept," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    20. Dina Aboelela & Habibatallah Saleh & Attia M. Attia & Yasser Elhenawy & Thokozani Majozi & Mohamed Bassyouni, 2023. "Recent Advances in Biomass Pyrolysis Processes for Bioenergy Production: Optimization of Operating Conditions," Sustainability, MDPI, vol. 15(14), pages 1-30, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:256:y:2022:i:c:s0360544222015869. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.