IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v282y2021ipas0306261920315701.html
   My bibliography  Save this article

Experimental investigation of reactivity controlled compression ignition with n-butanol/n-heptane in a heavy-duty diesel engine

Author

Listed:
  • Han, Jinlin
  • Bao, Hesheng
  • Somers, L.M.T.

Abstract

Butanol is a potential alternative fuel to be applied in the internal combustion engine for its sustainability and low-sooting propensity. In this paper, n-butanol is port injected as low reactivity fuel and n-heptane is directly injected into cylinder as high reactivity fuel to achieve high thermal efficiency as well as low soot/NOx emissions. To understand the effects of charge preparation parameters and load range of this reactivity controlled compression ignition combustion, experiments are performed in a single cylinder heavy-duty diesel engine. The results show that single direct injection causes either too early combustion phasing or excessive HC/CO emissions. Increasing the inlet boosting pressure is beneficial to obtain high thermal efficiency but HC/CO emissions deteriorate remarkably. The double direct injection strategy can phase the combustion properly and obtain high gross indicated efficiency without sacrificing CO emissions too much. Additionally, a high exhaust gas recirculation rate is necessary to achieve proper control of combustion phasing as the reactivity of n-butanol is not low enough. It is found that the n-butanol/n-heptane reactivity controlled compression ignition can be operated from low to medium loads. And the sensitivity of combustion phasing to the direct injection timing decreases as the load increases. At medium–high load, combustion couldn't be phased after the top dead center, which leads to high pressure rise rates and high peak pressures. Extremely low particulate matter and NOx emissions are observed throughout this tested load range and a gross indicated efficiency over 50% can be observed from low to medium load.

Suggested Citation

  • Han, Jinlin & Bao, Hesheng & Somers, L.M.T., 2021. "Experimental investigation of reactivity controlled compression ignition with n-butanol/n-heptane in a heavy-duty diesel engine," Applied Energy, Elsevier, vol. 282(PA).
  • Handle: RePEc:eee:appene:v:282:y:2021:i:pa:s0306261920315701
    DOI: 10.1016/j.apenergy.2020.116164
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920315701
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.116164?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhen, Xudong & Wang, Yang & Xu, Shuaiqing & Zhu, Yongsheng & Tao, Chengjun & Xu, Tao & Song, Mingzhi, 2012. "The engine knock analysis – An overview," Applied Energy, Elsevier, vol. 92(C), pages 628-636.
    2. Trindade, Wagner Roberto da Silva & Santos, Rogério Gonçalves dos, 2017. "Review on the characteristics of butanol, its production and use as fuel in internal combustion engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 642-651.
    3. Zhao, Wenbin & Li, Zilong & Huang, Guan & Zhang, Yaoyuan & Qian, Yong & Lu, Xingcai, 2020. "Experimental investigation of direct injection dual fuel of n-butanol and biodiesel on Intelligent Charge Compression Ignition (ICCI) Combustion mode," Applied Energy, Elsevier, vol. 266(C).
    4. Soloiu, Valentin & Gaubert, Remi & Moncada, Jose & Wiley, Justin & Williams, Johnnie & Harp, Spencer & Ilie, Marcel & Molina, Gustavo & Mothershed, David, 2019. "Reactivity controlled compression ignition and low temperature combustion of Fischer-Tropsch Fuel Blended with n-butanol," Renewable Energy, Elsevier, vol. 134(C), pages 1173-1189.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Jingtao & Zhang, Zhehao & Kang, Zhe & Deng, Jun & Li, Liguang & Wu, Zhijun, 2022. "An assessment methodology for fuel/water consumption co-optimization of a gasoline engine with port water injection," Applied Energy, Elsevier, vol. 310(C).
    2. Vargün, Mustafa & Turgut Yılmaz, Ilker & Sayın, Cenk, 2022. "Investigation of performance, combustion and emission characteristics in a diesel engine fueled with methanol/ethanol/nHeptane/diesel blends," Energy, Elsevier, vol. 257(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rami Y. Dahham & Haiqiao Wei & Jiaying Pan, 2022. "Improving Thermal Efficiency of Internal Combustion Engines: Recent Progress and Remaining Challenges," Energies, MDPI, vol. 15(17), pages 1-60, August.
    2. Tehseen Johar & Chiu-Fan Hsieh, 2023. "Design Challenges in Hydrogen-Fueled Rotary Engine—A Review," Energies, MDPI, vol. 16(2), pages 1-22, January.
    3. Zhen, Xudong & Wang, Yang, 2013. "Study of ignition in a high compression ratio SI (spark ignition) methanol engine using LES (large eddy simulation) with detailed chemical kinetics," Energy, Elsevier, vol. 59(C), pages 549-558.
    4. Zhao, Rui & Liu, Dong, 2022. "Temperature dependence of chemical effects of ethanol and dimethyl ether mixing on benzene and PAHs formation in ethylene counter-flow diffusion flames," Energy, Elsevier, vol. 257(C).
    5. EL-Seesy, Ahmed I. & Hassan, Hamdy, 2019. "Investigation of the effect of adding graphene oxide, graphene nanoplatelet, and multiwalled carbon nanotube additives with n-butanol-Jatropha methyl ester on a diesel engine performance," Renewable Energy, Elsevier, vol. 132(C), pages 558-574.
    6. Zhang, Qiankun & Xia, Jin & Wang, Jianping & He, Zhuoyao & Zhao, Wenbin & Qian, Yong & Zheng, Liang & Liu, Rui & Lu, Xingcai, 2022. "Experimental study on ignition and combustion characteristics of biodiesel-butanol blends at different injection pressures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    7. Meng, Hao & Ji, Changwei & Shen, Jianpu & Yang, Jinxin & Xin, Gu & Chang, Ke & Wang, Shuofeng, 2023. "Analysis of combustion characteristics under cooled EGR in the hydrogen-fueled Wankel rotary engine," Energy, Elsevier, vol. 263(PB).
    8. Wang, Chenyao & Zhang, Fujun & Wang, Enhua & Yu, Chuncun & Gao, Hongli & Liu, Bolan & Zhao, Zhenfeng & Zhao, Changlu, 2019. "Experimental study on knock suppression of spark-ignition engine fuelled with kerosene via water injection," Applied Energy, Elsevier, vol. 242(C), pages 248-259.
    9. Michał Wojcieszyk & Lotta Knuutila & Yuri Kroyan & Mário de Pinto Balsemão & Rupali Tripathi & Juha Keskivali & Anna Karvo & Annukka Santasalo-Aarnio & Otto Blomstedt & Martti Larmi, 2021. "Performance of Anisole and Isobutanol as Gasoline Bio-Blendstocks for Spark Ignition Engines," Sustainability, MDPI, vol. 13(16), pages 1-19, August.
    10. Xi, Haoran & Fu, Jianqin & Zhou, Feng & Yu, Juan & Liu, Jingping & Meng, Zhongwei, 2023. "Experimental and numerical studies of thermal power conversion and energy flow under high-compression ratios of a liquid methane engine (LME)," Energy, Elsevier, vol. 284(C).
    11. Chintala, V. & Subramanian, K.A., 2015. "An effort to enhance hydrogen energy share in a compression ignition engine under dual-fuel mode using low temperature combustion strategies," Applied Energy, Elsevier, vol. 146(C), pages 174-183.
    12. Lounici, M.S. & Benbellil, M.A. & Loubar, K. & Niculescu, D.C. & Tazerout, M., 2017. "Knock characterization and development of a new knock indicator for dual-fuel engines," Energy, Elsevier, vol. 141(C), pages 2351-2361.
    13. Jeonghyun Park & Kyung-Hwan Lee & Suhan Park, 2020. "Comprehensive Spray Characteristics of Water in Port Fuel Injection Injector," Energies, MDPI, vol. 13(2), pages 1-13, January.
    14. Zhao, Wenbin & Mi, Shijie & Wu, Haoqing & Zhang, Yaoyuan & He, Zhuoyao & Qian, Yong & Lu, Xingcai, 2022. "Towards a comprehensive understanding of mode transition between biodiesel-biobutanol dual-fuel ICCI low temperature combustion and conventional CI combustion - Part ΙΙ: A system optimization at low l," Energy, Elsevier, vol. 241(C).
    15. Li, Yangtao & Khajepour, Amir & Devaud, Cécile, 2018. "Realization of variable Otto-Atkinson cycle using variable timing hydraulic actuated valve train for performance and efficiency improvements in unthrottled gasoline engines," Applied Energy, Elsevier, vol. 222(C), pages 199-215.
    16. Majidian, Parastoo & Tabatabaei, Meisam & Zeinolabedini, Mehrshad & Naghshbandi, Mohammad Pooya & Chisti, Yusuf, 2018. "Metabolic engineering of microorganisms for biofuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3863-3885.
    17. Shi, Hao & Uddeen, Kalim & An, Yanzhao & Pei, Yiqiang & Johansson, Bengt, 2021. "Multiple spark plugs coupled with pressure sensors: A new approach for knock mechanism study on SI engines," Energy, Elsevier, vol. 227(C).
    18. Chiet Choo, Edwin Jia & Cheng, Xinwei & Scribano, Gianfranco & Ng, Hoon Kiat & Gan, Suyin, 2023. "Numerical investigation on the temporal and quasi-steady state soot characteristics of n-dodecane-n-butanol spray combustion," Energy, Elsevier, vol. 268(C).
    19. De Bellis, Vincenzo, 2016. "Performance optimization of a spark-ignition turbocharged VVA engine under knock limited operation," Applied Energy, Elsevier, vol. 164(C), pages 162-174.
    20. García, Antonio & Monsalve-Serrano, Javier & Martinez-Boggio, Santiago & Zhao, Wenbin & Qian, Yong, 2022. "Intelligent charge compression ignition combustion for range extender medium duty applications," Renewable Energy, Elsevier, vol. 187(C), pages 671-687.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:282:y:2021:i:pa:s0306261920315701. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.