IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v256y2022ics0360544222014256.html
   My bibliography  Save this article

Analysis of thermal efficiency of a corrugated double-tube heat exchanger with nanofluids

Author

Listed:
  • Zheng, Dan
  • Du, Jianqiang
  • Wang, Wei
  • Klemeš, Jiří Jaromír
  • Wang, Jin
  • Sundén, Bengt

Abstract

This research investigated convective heat transfer and hydraulic resistance of smooth and corrugated double-tube heat exchangers at various flow rates from 60 L/h to 200 L/h. The inner tube with a thread structure is designed with three pitches, i.e., 4 mm, 6 mm and 8 mm. Nanofluids are used as tube-side fluids to analyze the enhancement of heat transfer on the inner tube side. Results show that the boundary layer is destroyed by the thread structure, and the heat flux is intensified at the outer tube side. For the double-tube heat exchanger, the combined enhancement technology using thread structure at the side of the outer tube and nanofluids at the side of the inner tube contributes to improvement in the overall heat transfer performance. The maximum increment in the comprehensive performance index is 59% for the case of 1.5 wt% SiC-water nanofluid with a thread pitch of 4 mm at a flow rate of 200 L/h. Finally, the distribution of local temperature difference is analysed theoretically for nanofluids with the optimum particle concentrations, which confirmed the rationality of 1.5 wt% SiC-water nanofluid with a thread pitch of 4 mm. Results reveal that the combined enhancement of using nanofluids and a thread structure has great potential in enhancing the thermal performance of double-tube heat exchangers.

Suggested Citation

  • Zheng, Dan & Du, Jianqiang & Wang, Wei & Klemeš, Jiří Jaromír & Wang, Jin & Sundén, Bengt, 2022. "Analysis of thermal efficiency of a corrugated double-tube heat exchanger with nanofluids," Energy, Elsevier, vol. 256(C).
  • Handle: RePEc:eee:energy:v:256:y:2022:i:c:s0360544222014256
    DOI: 10.1016/j.energy.2022.124522
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222014256
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.124522?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ma, Ting & Zhang, Pan & Deng, Tianrui & Ke, Hanbing & Lin, Yuansheng & Wang, Qiuwang, 2021. "Thermal-hydraulic characteristics of printed circuit heat exchanger used for floating natural gas liquefaction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    2. Kristina Navickaitė & Michael Penzel & Christian R. H. Bahl & Kurt Engelbrecht, 2021. "Performance Assessment of Double Corrugated Tubes in a Tube-In-Shell Heat Exchanger," Energies, MDPI, vol. 14(5), pages 1-17, March.
    3. Ma, Ting & Guo, Zhixiong & Lin, Mei & Wang, Qiuwang, 2021. "Recent trends on nanofluid heat transfer machine learning research applied to renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    4. Wang, Jin & Yu, Kai & Duan, Runze & Xie, Gongnan & Sundén, Bengt, 2021. "Enhanced thermal management by introducing nanoparticle composite phase change materials for cooling multiple heat sources systems," Energy, Elsevier, vol. 227(C).
    5. Bahiraei, Mehdi & Hangi, Morteza & Saeedan, Mahdi, 2015. "A novel application for energy efficiency improvement using nanofluid in shell and tube heat exchanger equipped with helical baffles," Energy, Elsevier, vol. 93(P2), pages 2229-2240.
    6. Sardarabadi, Mohammad & Passandideh-Fard, Mohammad & Zeinali Heris, Saeed, 2014. "Experimental investigation of the effects of silica/water nanofluid on PV/T (photovoltaic thermal units)," Energy, Elsevier, vol. 66(C), pages 264-272.
    7. Nižetić, Sandro & Jurčević, Mišo & Arıcı, Müslüm & Arasu, A. Valan & Xie, Gongnan, 2020. "Nano-enhanced phase change materials and fluids in energy applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 129(C).
    8. Ham, Jeonggyun & Shin, Yunchan & Cho, Honghyun, 2022. "Comparison of thermal performance between a surface and a volumetric absorption solar collector using water and Fe3O4 nanofluid," Energy, Elsevier, vol. 239(PC).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Tianyi & Chen, Lei & Wang, Jin, 2023. "Multi-objective optimization of elliptical tube fin heat exchangers based on neural networks and genetic algorithm," Energy, Elsevier, vol. 269(C).
    2. Wang, Jin & Yang, Xian & Klemeš, Jiří Jaromír & Tian, Ke & Ma, Ting & Sunden, Bengt, 2023. "A review on nanofluid stability: preparation and application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mamourian, Mojtaba & Milani Shirvan, Kamel & Mirzakhanlari, Soroush, 2016. "Two phase simulation and sensitivity analysis of effective parameters on turbulent combined heat transfer and pressure drop in a solar heat exchanger filled with nanofluid by Response Surface Methodol," Energy, Elsevier, vol. 109(C), pages 49-61.
    2. Wang, Yanqiu & Ji, Jie & Sun, Wei & Yuan, Weiqi & Cai, Jingyong & Guo, Chao & He, Wei, 2016. "Experiment and simulation study on the optimization of the PV direct-coupled solar water heating system," Energy, Elsevier, vol. 100(C), pages 154-166.
    3. Yao, Jian & Dou, Pengbo & Zheng, Sihang & Zhao, Yao & Dai, Yanjun & Zhu, Junjie & Novakovic, Vojislav, 2022. "Co-generation ability investigation of the novel structured PVT heat pump system and its effect on the “Carbon neutral” strategy of Shanghai," Energy, Elsevier, vol. 239(PA).
    4. Yang, Jian-Feng & Lin, Yuan-Sheng & Ke, Han-Bing & Zeng, Min & Wang, Qiu-Wang, 2016. "Investigation on combined multiple shell-pass shell-and-tube heat exchanger with continuous helical baffles," Energy, Elsevier, vol. 115(P3), pages 1572-1579.
    5. Sardarabadi, Mohammad & Hosseinzadeh, Mohammad & Kazemian, Arash & Passandideh-Fard, Mohammad, 2017. "Experimental investigation of the effects of using metal-oxides/water nanofluids on a photovoltaic thermal system (PVT) from energy and exergy viewpoints," Energy, Elsevier, vol. 138(C), pages 682-695.
    6. Hossain, Farzad & Karim, Md. Rezwanul & Bhuiyan, Arafat A., 2022. "A review on recent advancements of the usage of nano fluid in hybrid photovoltaic/thermal (PV/T) solar systems," Renewable Energy, Elsevier, vol. 188(C), pages 114-131.
    7. Evangelisti, Luca & De Lieto Vollaro, Roberto & Asdrubali, Francesco, 2019. "Latest advances on solar thermal collectors: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    8. Firoozzadeh, Mohammad & Shiravi, Amir Hossein & Lotfi, Marzieh & Aidarova, Saule & Sharipova, Altynay, 2021. "Optimum concentration of carbon black aqueous nanofluid as coolant of photovoltaic modules: A case study," Energy, Elsevier, vol. 225(C).
    9. Vetrivel Kumar Kandasamy & Sivakumar Jaganathan & Ratchagaraja Dhairiyasamy & Silambarasan Rajendran, 2023. "Optimizing the efficiency of solar thermal collectors and studying the effect of particle concentration and stability using nanofluidic analysis," Energy & Environment, , vol. 34(5), pages 1564-1591, August.
    10. Ma, Tao & Li, Meng & Kazemian, Arash, 2020. "Photovoltaic thermal module and solar thermal collector connected in series to produce electricity and high-grade heat simultaneously," Applied Energy, Elsevier, vol. 261(C).
    11. Guarracino, Ilaria & Freeman, James & Ramos, Alba & Kalogirou, Soteris A. & Ekins-Daukes, Nicholas J. & Markides, Christos N., 2019. "Systematic testing of hybrid PV-thermal (PVT) solar collectors in steady-state and dynamic outdoor conditions," Applied Energy, Elsevier, vol. 240(C), pages 1014-1030.
    12. Maleki, Yaser & Pourfayaz, Fathollah & Mehrpooya, Mehdi, 2022. "Experimental study of a novel hybrid photovoltaic/thermal and thermoelectric generators system with dual phase change materials," Renewable Energy, Elsevier, vol. 201(P2), pages 202-215.
    13. Rostami, Sara & Afrand, Masoud & Shahsavar, Amin & Sheikholeslami, M. & Kalbasi, Rasool & Aghakhani, Saeed & Shadloo, Mostafa Safdari & Oztop, Hakan F., 2020. "A review of melting and freezing processes of PCM/nano-PCM and their application in energy storage," Energy, Elsevier, vol. 211(C).
    14. Shahsavar, Amin & Jha, Prabhakar & Arici, Muslum & Kefayati, Gholamreza, 2021. "A comparative experimental investigation of energetic and exergetic performances of water/magnetite nanofluid-based photovoltaic/thermal system equipped with finned and unfinned collectors," Energy, Elsevier, vol. 220(C).
    15. Sainz-Mañas, Miguel & Bataille, Françoise & Caliot, Cyril & Vossier, Alexis & Flamant, Gilles, 2022. "Direct absorption nanofluid-based solar collectors for low and medium temperatures. A review," Energy, Elsevier, vol. 260(C).
    16. Ye, Mingzheng & Du, Jianqiang & Wang, Jin & Chen, Lei & Varbanov, Petar Sabev & Klemeš, Jiří Jaromír, 2022. "Investigation on thermal performance of nanofluids in a microchannel with fan-shaped cavities and oval pin fins," Energy, Elsevier, vol. 260(C).
    17. Shatar, Nursyahirah Mohd & Sabri, Mohd Faizul Mohd & Salleh, Mohd Faiz Mohd & Ani, Mohd Hanafi, 2023. "Investigation on the performance of solar still with thermoelectric cooling system for various cover material," Renewable Energy, Elsevier, vol. 202(C), pages 844-854.
    18. Guo, Chao & Ji, Jie & Sun, Wei & Ma, Jinwei & He, Wei & Wang, Yanqiu, 2015. "Numerical simulation and experimental validation of tri-functional photovoltaic/thermal solar collector," Energy, Elsevier, vol. 87(C), pages 470-480.
    19. Luo, Yongqiang & Zhang, Ling & Wang, Xiliang & Xie, Lei & Liu, Zhongbing & Wu, Jing & Zhang, Yelin & He, Xihua, 2017. "A comparative study on thermal performance evaluation of a new double skin façade system integrated with photovoltaic blinds," Applied Energy, Elsevier, vol. 199(C), pages 281-293.
    20. Hachicha, Ahmed Amine & Abo-Zahhad, Essam M. & Said, Zafar & Rahman, S.M.A., 2022. "Numerical and experimental investigations of the electrical and thermal performances of a novel PV thermal system," Renewable Energy, Elsevier, vol. 195(C), pages 990-1000.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:256:y:2022:i:c:s0360544222014256. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.