IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i5p1343-d508555.html
   My bibliography  Save this article

Performance Assessment of Double Corrugated Tubes in a Tube-In-Shell Heat Exchanger

Author

Listed:
  • Kristina Navickaitė

    (Beckmann-Institut für Technologieentwicklung e.V., Annaberger Str. 73, 09111 Chemnitz, Germany)

  • Michael Penzel

    (Beckmann-Institut für Technologieentwicklung e.V., Annaberger Str. 73, 09111 Chemnitz, Germany)

  • Christian R. H. Bahl

    (Department of Energy Conversion and Storage, Technical University of Denmark, Anker Engelunds Vej, 2800 Kongens Lyngby, Denmark)

  • Kurt Engelbrecht

    (Department of Energy Conversion and Storage, Technical University of Denmark, Anker Engelunds Vej, 2800 Kongens Lyngby, Denmark)

Abstract

In this article, the performance of double corrugated tubes applied in a tube-in-shell heat exchanger is analysed and compared to the performance of a heat exchanger equipped with straight tubes. The CFD (computational fluid dynamics) analysis was performed considering a turbulent flow regime at several mass flow rates. It is observed that the double corrugated geometry does not have a significant impact on the pressure drop inside the analysed heat exchanger, while it has the potential to increase its thermal performance by up to 25%. The ε–NTU (effectiveness–number of transfer units) relation also demonstrates the advantage of using double corrugated tubes in tube-in-shell heat exchangers over straight tubes.

Suggested Citation

  • Kristina Navickaitė & Michael Penzel & Christian R. H. Bahl & Kurt Engelbrecht, 2021. "Performance Assessment of Double Corrugated Tubes in a Tube-In-Shell Heat Exchanger," Energies, MDPI, vol. 14(5), pages 1-17, March.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:5:p:1343-:d:508555
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/5/1343/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/5/1343/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Laohalertdecha, Suriyan & Naphon, Paisarn & Wongwises, Somchai, 2007. "A review of electrohydrodynamic enhancement of heat transfer," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(5), pages 858-876, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zheng, Dan & Du, Jianqiang & Wang, Wei & Klemeš, Jiří Jaromír & Wang, Jin & Sundén, Bengt, 2022. "Analysis of thermal efficiency of a corrugated double-tube heat exchanger with nanofluids," Energy, Elsevier, vol. 256(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mousa, Mohamed H. & Yang, Cheng-Min & Nawaz, Kashif & Miljkovic, Nenad, 2022. "Review of heat transfer enhancement techniques in two-phase flows for highly efficient and sustainable cooling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    2. Jiang, Ruicheng & Qian, Gao & Li, Zhi & Yu, Xiaoli & Lu, Yiji, 2024. "Progress and challenges of latent thermal energy storage through external field-dependent heat transfer enhancement methods," Energy, Elsevier, vol. 304(C).
    3. Klinar, K. & Kitanovski, A., 2020. "Thermal control elements for caloric energy conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    4. Mangrulkar, Chidanand K. & Dhoble, Ashwinkumar S. & Chamoli, Sunil & Gupta, Ashutosh & Gawande, Vipin B., 2019. "Recent advancement in heat transfer and fluid flow characteristics in cross flow heat exchangers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    5. Amer, Mohammed & Wang, Chi-Chuan, 2017. "Review of defrosting methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 53-74.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:5:p:1343-:d:508555. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.