IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i2p1011-d1038029.html
   My bibliography  Save this article

A Surrogate-Assisted Adaptive Bat Algorithm for Large-Scale Economic Dispatch

Author

Listed:
  • Aokang Pang

    (College of Intelligent Systems Science and Engineering, Hubei Minzu University, Enshi 445000, China
    These authors contributed equally to this work.)

  • Huijun Liang

    (College of Intelligent Systems Science and Engineering, Hubei Minzu University, Enshi 445000, China
    These authors contributed equally to this work.)

  • Chenhao Lin

    (College of Intelligent Systems Science and Engineering, Hubei Minzu University, Enshi 445000, China
    These authors contributed equally to this work.)

  • Lei Yao

    (Enshi Power Supply Company, State Grid Hubei Electric Power Company, Enshi 445000, China
    These authors contributed equally to this work.)

Abstract

Large-scale grids have gradually become the dominant trend in power systems, which has increased the importance of solving the challenges associated with large-scale economic dispatch (LED). An increase in the number of decision variables enlarges the search-space scale in LED. In addition to increasing the difficulty of solving algorithms, huge amounts of computing resources are consumed. To overcome this problem, we proposed a surrogate-assisted adaptive bat algorithm (GARCBA). On the one hand, to reduce the execution time of LED problems, we proposed a generalized regression neural network surrogate model based on a self-adaptive “minimizing the predictor” sampling strategy, which replaces the original fuel cost functions with a shorter computing time. On the other hand, we also proposed an improved hybrid bat algorithm (RCBA) named GARCBA to execute LED optimization problems. Specifically, we developed an evolutionary state evaluation (ESE) method to increase the performance of the original RCBA. Moreover, we introduced the ESE to analyze the population distribution, fitness, and effective radius of the random black hole in the original RCBA. We achieved a substantial improvement in computational time, accuracy, and convergence when using the GARCBA to solve LED problems, and we demonstrated this method’s effectiveness with three sets of simulations.

Suggested Citation

  • Aokang Pang & Huijun Liang & Chenhao Lin & Lei Yao, 2023. "A Surrogate-Assisted Adaptive Bat Algorithm for Large-Scale Economic Dispatch," Energies, MDPI, vol. 16(2), pages 1-23, January.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:2:p:1011-:d:1038029
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/2/1011/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/2/1011/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ali S. Alghamdi, 2022. "Greedy Sine-Cosine Non-Hierarchical Grey Wolf Optimizer for Solving Non-Convex Economic Load Dispatch Problems," Energies, MDPI, vol. 15(11), pages 1-19, May.
    2. Salil Madhav Dubey & Hari Mohan Dubey & Surender Reddy Salkuti, 2022. "Modified Quasi-Opposition-Based Grey Wolf Optimization for Mathematical and Electrical Benchmark Problems," Energies, MDPI, vol. 15(15), pages 1-29, August.
    3. Mokhtar Said & Ali M. El-Rifaie & Mohamed A. Tolba & Essam H. Houssein & Sanchari Deb, 2021. "An Efficient Chameleon Swarm Algorithm for Economic Load Dispatch Problem," Mathematics, MDPI, vol. 9(21), pages 1-14, November.
    4. Basu, M. & Chowdhury, A., 2013. "Cuckoo search algorithm for economic dispatch," Energy, Elsevier, vol. 60(C), pages 99-108.
    5. Xu, Shengping & Xiong, Guojiang & Mohamed, Ali Wagdy & Bouchekara, Houssem R.E.H., 2022. "Forgetting velocity based improved comprehensive learning particle swarm optimization for non-convex economic dispatch problems with valve-point effects and multi-fuel options," Energy, Elsevier, vol. 256(C).
    6. Faisal Tariq & Salem Alelyani & Ghulam Abbas & Ayman Qahmash & Mohammad Rashid Hussain, 2020. "Solving Renewables-Integrated Economic Load Dispatch Problem by Variant of Metaheuristic Bat-Inspired Algorithm," Energies, MDPI, vol. 13(23), pages 1-36, November.
    7. Khaled Guerraiche & Latifa Dekhici & Eric Chatelet & Abdelkader Zeblah, 2021. "Multi-Objective Electrical Power System Design Optimization Using a Modified Bat Algorithm," Energies, MDPI, vol. 14(13), pages 1-19, July.
    8. Ragab El-Sehiemy & Abdullah Shaheen & Ahmed Ginidi & Mostafa Elhosseini, 2022. "A Honey Badger Optimization for Minimizing the Pollutant Environmental Emissions-Based Economic Dispatch Model Integrating Combined Heat and Power Units," Energies, MDPI, vol. 15(20), pages 1-22, October.
    9. Jianzhong Xu & Fu Yan & Kumchol Yun & Lifei Su & Fengshu Li & Jun Guan, 2019. "Noninferior Solution Grey Wolf Optimizer with an Independent Local Search Mechanism for Solving Economic Load Dispatch Problems," Energies, MDPI, vol. 12(12), pages 1-26, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nwulu, Nnamdi I. & Xia, Xiaohua, 2015. "Implementing a model predictive control strategy on the dynamic economic emission dispatch problem with game theory based demand response programs," Energy, Elsevier, vol. 91(C), pages 404-419.
    2. Ghulam Abbas & Irfan Ahmad Khan & Naveed Ashraf & Muhammad Taskeen Raza & Muhammad Rashad & Raheel Muzzammel, 2023. "On Employing a Constrained Nonlinear Optimizer to Constrained Economic Dispatch Problems," Sustainability, MDPI, vol. 15(13), pages 1-23, June.
    3. Ghareeb Moustafa & Ali M. El-Rifaie & Idris H. Smaili & Ahmed Ginidi & Abdullah M. Shaheen & Ahmed F. Youssef & Mohamed A. Tolba, 2023. "An Enhanced Dwarf Mongoose Optimization Algorithm for Solving Engineering Problems," Mathematics, MDPI, vol. 11(15), pages 1-26, July.
    4. Hu, Gang & Yang, Rui & Wei, Guo, 2023. "Hybrid chameleon swarm algorithm with multi-strategy: A case study of degree reduction for disk Wang–Ball curves," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 206(C), pages 709-769.
    5. Taha Selim Ustun, 2022. "Power Systems Imitate Nature for Improved Performance Use of Nature-Inspired Optimization Techniques," Energies, MDPI, vol. 15(17), pages 1-2, August.
    6. Jianzhong Xu & Fu Yan & Kumchol Yun & Lifei Su & Fengshu Li & Jun Guan, 2019. "Noninferior Solution Grey Wolf Optimizer with an Independent Local Search Mechanism for Solving Economic Load Dispatch Problems," Energies, MDPI, vol. 12(12), pages 1-26, June.
    7. Wisam Kareem Meteab & Salwan Ali Habeeb Alsultani & Francisco Jurado, 2023. "Energy Management of Microgrids with a Smart Charging Strategy for Electric Vehicles Using an Improved RUN Optimizer," Energies, MDPI, vol. 16(16), pages 1-18, August.
    8. Paweł Pijarski & Piotr Kacejko & Piotr Miller, 2023. "Advanced Optimisation and Forecasting Methods in Power Engineering—Introduction to the Special Issue," Energies, MDPI, vol. 16(6), pages 1-20, March.
    9. Vikram Kumar Kamboj & Challa Leela Kumari & Sarbjeet Kaur Bath & Deepak Prashar & Mamoon Rashid & Sultan S. Alshamrani & Ahmed Saeed AlGhamdi, 2022. "A Cost-Effective Solution for Non-Convex Economic Load Dispatch Problems in Power Systems Using Slime Mould Algorithm," Sustainability, MDPI, vol. 14(5), pages 1-36, February.
    10. Modiri-Delshad, Mostafa & Aghay Kaboli, S. Hr. & Taslimi-Renani, Ehsan & Rahim, Nasrudin Abd, 2016. "Backtracking search algorithm for solving economic dispatch problems with valve-point effects and multiple fuel options," Energy, Elsevier, vol. 116(P1), pages 637-649.
    11. Le Chi Kien & Thanh Long Duong & Van-Duc Phan & Thang Trung Nguyen, 2020. "Maximizing Total Profit of Thermal Generation Units in Competitive Electric Market by Using a Proposed Particle Swarm Optimization," Sustainability, MDPI, vol. 12(3), pages 1-35, February.
    12. Hossein Lotfi & Mohammad Hasan Nikkhah, 2023. "Presenting a Novel Evolutionary Method for Reserve Constrained Multi-Area Economic/Emission Dispatch Problem," Sustainability, MDPI, vol. 15(13), pages 1-20, July.
    13. Zou, Dexuan & Li, Steven & Wang, Gai-Ge & Li, Zongyan & Ouyang, Haibin, 2016. "An improved differential evolution algorithm for the economic load dispatch problems with or without valve-point effects," Applied Energy, Elsevier, vol. 181(C), pages 375-390.
    14. Meng, Xuejiao & Chang, Jianxia & Wang, Xuebin & Wang, Yimin, 2019. "Multi-objective hydropower station operation using an improved cuckoo search algorithm," Energy, Elsevier, vol. 168(C), pages 425-439.
    15. Yuan, Yi & Ding, Tao & Chang, Xinyue & Jia, Wenhao & Xue, Yixun, 2024. "A distributed multi-objective optimization method for scheduling of integrated electricity and hydrogen systems," Applied Energy, Elsevier, vol. 355(C).
    16. Meng, Anbo & Zeng, Cong & Xu, Xuancong & Ding, Weifeng & Liu, Shiyun & Chen, De & Yin, Hao, 2022. "Decentralized power economic dispatch by distributed crisscross optimization in multi-agent system," Energy, Elsevier, vol. 246(C).
    17. Araby Mahdy & Abdullah Shaheen & Ragab El-Sehiemy & Ahmed Ginidi & Saad F. Al-Gahtani, 2023. "Single- and Multi-Objective Optimization Frameworks of Shape Design of Tubular Linear Synchronous Motor," Energies, MDPI, vol. 16(5), pages 1-27, March.
    18. Marco Pau & Paolo Attilio Pegoraro, 2022. "Monitoring and Automation of Complex Power Systems," Energies, MDPI, vol. 15(8), pages 1-3, April.
    19. Elsakaan, Asmaa A. & El-Sehiemy, Ragab A. & Kaddah, Sahar S. & Elsaid, Mohammed I., 2018. "An enhanced moth-flame optimizer for solving non-smooth economic dispatch problems with emissions," Energy, Elsevier, vol. 157(C), pages 1063-1078.
    20. Oruc, Ridvan & Baklacioglu, Tolga, 2023. "Modeling of energy maneuverability based specific excess power contours for commercial aircraft using metaheuristic methods," Energy, Elsevier, vol. 269(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:2:p:1011-:d:1038029. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.