IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v255y2022ics0360544222014578.html
   My bibliography  Save this article

Co-factors applicability in hydrogen production from rice straw hydrolysate in a bioelectrochemical system

Author

Listed:
  • Singh, Neeraj Kumar
  • Singh, Rajesh

Abstract

The hydrogen production efficiency of sulfate-reducing bacteria (SRB) is governed by complex hydrogenase metabolism functions depending on the metal co-factors concentrations. The potential of SRB rich in hydrogenase enzyme activity for hydrogen production is rarely explored. Therefore, in this study, the hydrogenase enzyme cofactors of Fe2+ (0.67–0.85 mM), Ni2+ (0.01–0.02 mM), and Se4+ (0.1 mM) were tested for hydrogen production from rice straw hydrolysate using response surface methodology optimized conditions. The Fe2+ and Se4+ ions are essentially required to express hydrogenases in SRB. The positive contribution of [FeFe] hydrogenase and negative impact of [NiFe] at a higher level of Ni2+ (p = 0.061) in Phase I (cofactor added in SO42− free Postage media), whereas, in Phase II (SO42− free Postage media added to residual of Phase I), Ni2+ dependent hydrogenase contributed more (p = 0.005) is a good indicator for higher hydrogen production. The hydrogenase enzyme expression is more positively correlated with Se4+ ions (Vector angle <5°), whereas lesser correlated with Ni2+ (Vector angle ∼30°). The higher Acetate/Butyrate ratio shows the existence of the acetate type of pathway correlated with high hydrogen production. The applied potential to the hydrolysates further improves the hydrogen production to 782.69% and 172.61% in ammonia and NaOH reactors, respectively.

Suggested Citation

  • Singh, Neeraj Kumar & Singh, Rajesh, 2022. "Co-factors applicability in hydrogen production from rice straw hydrolysate in a bioelectrochemical system," Energy, Elsevier, vol. 255(C).
  • Handle: RePEc:eee:energy:v:255:y:2022:i:c:s0360544222014578
    DOI: 10.1016/j.energy.2022.124554
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222014578
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.124554?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Guang & Wang, Jianlong, 2018. "Various additives for improving dark fermentative hydrogen production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 130-146.
    2. Prajapati, Kalp Bhusan & Singh, Rajesh, 2020. "Bio-electrochemically hydrogen and methane production from co-digestion of wastes," Energy, Elsevier, vol. 198(C).
    3. Li, Wen-Chao & Zhang, Sen-Jia & Xu, Tao & Sun, Mei-Qing & Zhu, Jia-Qing & Zhong, Cheng & Li, Bing-Zhi & Yuan, Ying-Jin, 2020. "Fractionation of corn stover by two-step pretreatment for production of ethanol, furfural, and lignin," Energy, Elsevier, vol. 195(C).
    4. Lopez-Hidalgo, Angel M. & Alvarado-Cuevas, Zazil D. & De Leon-Rodriguez, Antonio, 2018. "Biohydrogen production from mixtures of agro-industrial wastes: Chemometric analysis, optimization and scaling up," Energy, Elsevier, vol. 159(C), pages 32-41.
    5. Singh, Neeraj Kumar & Kumari, Priyanka & Singh, Rajesh, 2021. "Intensified hydrogen yield using hydrogenase rich sulfate-reducing bacteria in bio-electrochemical system," Energy, Elsevier, vol. 219(C).
    6. Kainthola, Jyoti & Shariq, Mohd & Kalamdhad, Ajay S. & Goud, Vaibhav V., 2019. "Electrohydrolysis pretreatment methods to enhance the methane production from anaerobic digestion of rice straw using graphite electrode," Renewable Energy, Elsevier, vol. 142(C), pages 1-10.
    7. Morone, Amruta & Sharma, Ganesh & Sharma, Abhinav & Chakrabarti, Tapan & Pandey, R.A., 2018. "Evaluation, applicability and optimization of advanced oxidation process for pretreatment of rice straw and its effect on cellulose digestibility," Renewable Energy, Elsevier, vol. 120(C), pages 88-97.
    8. Deng, Chen & Lin, Richen & Kang, Xihui & Wu, Benteng & Wall, David & Murphy, Jerry D., 2022. "Improvement in biohydrogen and volatile fatty acid production from seaweed through addition of conductive carbon materials depends on the properties of the conductive materials," Energy, Elsevier, vol. 239(PC).
    9. Sivagurunathan, Periyasamy & Kumar, Gopalakrishnan & Mudhoo, Ackmez & Rene, Eldon R. & Saratale, Ganesh Dattatraya & Kobayashi, Takuro & Xu, Kaiqin & Kim, Sang-Hyoun & Kim, Dong-Hoon, 2017. "Fermentative hydrogen production using lignocellulose biomass: An overview of pre-treatment methods, inhibitor effects and detoxification experiences," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 28-42.
    10. Ndayisenga, Fabrice & Yu, Zhisheng & Zheng, Jianzhong & Wang, Bobo & Liang, Hongxia & Phulpoto, Irfan Ali & Habiyakare, Telesphore & Zhou, Dandan, 2021. "Microbial electrohydrogenesis cell and dark fermentation integrated system enhances biohydrogen production from lignocellulosic agricultural wastes: Substrate pretreatment towards optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    11. Ortigueira, Joana & Pinto, Tiago & Gouveia, Luísa & Moura, Patrícia, 2015. "Production and storage of biohydrogen during sequential batch fermentation of Spirogyra hydrolyzate by Clostridium butyricum," Energy, Elsevier, vol. 88(C), pages 528-536.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zagrodnik, Roman & Duber, Anna, 2024. "Continuous dark-photo fermentative H2 production from synthetic lignocellulose hydrolysate with different photoheterotrophic cultures: Sequential vs. co-culture processes," Energy, Elsevier, vol. 290(C).
    2. Zhang, Zexi & Ding, Ke & Ma, Xiaojun & Tang, Shuai & Wang, Zixin & Lu, Haifeng & Jiang, Weizhong & Si, Buchun, 2023. "Hydrodynamic design of down-flow packed bed reactor regulated the biohydrogen production and microbial enrichment," Energy, Elsevier, vol. 271(C).
    3. Karim, Ahasanul & Islam, M. Amirul & Mishra, Puranjan & Yousuf, Abu & Faizal, Che Ku Mohammad & Khan, Md. Maksudur Rahman, 2021. "Technical difficulties of mixed culture driven waste biomass-based biohydrogen production: Sustainability of current pretreatment techniques and future prospective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    4. Alessandra Morana & Giuseppe Squillaci & Susana M. Paixão & Luís Alves & Francesco La Cara & Patrícia Moura, 2017. "Development of an Energy Biorefinery Model for Chestnut ( Castanea sativa Mill.) Shells," Energies, MDPI, vol. 10(10), pages 1-14, September.
    5. So-Yeon Jeong & Jae-Won Lee, 2021. "Effects of Sugars and Degradation Products Derived from Lignocellulosic Biomass on Maleic Acid Production," Energies, MDPI, vol. 14(4), pages 1-11, February.
    6. Yang, Guang & Wang, Jianlong, 2018. "Various additives for improving dark fermentative hydrogen production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 130-146.
    7. Łukajtis, Rafał & Hołowacz, Iwona & Kucharska, Karolina & Glinka, Marta & Rybarczyk, Piotr & Przyjazny, Andrzej & Kamiński, Marian, 2018. "Hydrogen production from biomass using dark fermentation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 665-694.
    8. Singh, Harshita & Varanasi, Jhansi L. & Banerjee, Srijoni & Das, Debabrata, 2019. "Production of carbohydrate enrich microalgal biomass as a bioenergy feedstock," Energy, Elsevier, vol. 188(C).
    9. Shabarish Shankaran & Tamilarasan Karuppiah & Rajesh Banu Jeyakumar & Godvin Sharmila Vincent, 2023. "Statistical Optimization of Chemo Sonic Liquefaction in Macroalgae for Biohydrogen Generation—An Energy-Effective Approach," Energies, MDPI, vol. 16(7), pages 1-15, March.
    10. Singh, Neeraj Kumar & Kumari, Priyanka & Singh, Rajesh, 2021. "Intensified hydrogen yield using hydrogenase rich sulfate-reducing bacteria in bio-electrochemical system," Energy, Elsevier, vol. 219(C).
    11. Shao, Weilan & Wang, Qiang & Rupani, Parveen Fatemeh & Krishnan, Santhana & Ahmad, Fiaz & Rezania, Shahabaldin & Rashid, Muhammad Adnan & Sha, Chong & Md Din, Mohd Fadhil, 2020. "Biohydrogen production via thermophilic fermentation: A prospective application of Thermotoga species," Energy, Elsevier, vol. 197(C).
    12. Luz Breton-Deval & Ilse Salinas-Peralta & Jaime Santiago Alarcón Aguirre & Belkis Sulbarán-Rangel & Kelly Joel Gurubel Tun, 2020. "Taxonomic Binning Approaches and Functional Characteristics of the Microbial Community during the Anaerobic Digestion of Hydrolyzed Corncob," Energies, MDPI, vol. 14(1), pages 1-14, December.
    13. Meky, Naira & Elreedy, Ahmed & Ibrahim, Mona G. & Fujii, Manabu & Tawfik, Ahmed, 2021. "Intermittent versus sequential dark-photo fermentative hydrogen production as an alternative for bioenergy recovery from protein-rich effluents," Energy, Elsevier, vol. 217(C).
    14. Kainthola, Jyoti & Shariq, Mohd & Kalamdhad, Ajay S. & Goud, Vaibhav V., 2019. "Electrohydrolysis pretreatment methods to enhance the methane production from anaerobic digestion of rice straw using graphite electrode," Renewable Energy, Elsevier, vol. 142(C), pages 1-10.
    15. Morsy, Fatthy Mohamed & Ibrahim, Samir Hag, 2016. "Concomitant hydrolysis of sucrose by the long half-life time yeast invertase and hydrogen production by the hydrogen over-producing Escherichia coli HD701," Energy, Elsevier, vol. 109(C), pages 412-419.
    16. Przemysław Liczbiński & Sebastian Borowski, 2021. "Co-Digestion of Kitchen Waste with Grass and Leaves after Hyperthermophilic Pretreatment for Methane and Hydrogen Production," Energies, MDPI, vol. 14(18), pages 1-9, September.
    17. Ma, Hanxiao & Su, Haijia, 2019. "Effect of temperature on the fermentation of starch by two high efficient H2 producers," Renewable Energy, Elsevier, vol. 138(C), pages 964-970.
    18. Wu, Benteng & Lin, Richen & Bose, Archishman & Huerta, Jorge Diaz & Kang, Xihui & Deng, Chen & Murphy, Jerry D., 2023. "Economic and environmental viability of biofuel production from organic wastes: A pathway towards competitive carbon neutrality," Energy, Elsevier, vol. 285(C).
    19. Hu, Bin-Bin & Wang, Ji-Lian & Wang, Yu-Tao & Zhu, Ming-Jun, 2019. "Specify the individual and synergistic effects of lignocellulose-derived inhibitors on biohydrogen production and inhibitory mechanism research," Renewable Energy, Elsevier, vol. 140(C), pages 397-406.
    20. Panigrahi, Sagarika & Dubey, Brajesh K., 2019. "A critical review on operating parameters and strategies to improve the biogas yield from anaerobic digestion of organic fraction of municipal solid waste," Renewable Energy, Elsevier, vol. 143(C), pages 779-797.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:255:y:2022:i:c:s0360544222014578. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.