IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i10p1504-d113445.html
   My bibliography  Save this article

Development of an Energy Biorefinery Model for Chestnut ( Castanea sativa Mill.) Shells

Author

Listed:
  • Alessandra Morana

    (Institute of Agro-Environmental and Forest Biology, National Research Council of Italy, Via Pietro Castellino 111, 80131 Naples, Italy)

  • Giuseppe Squillaci

    (Institute of Agro-Environmental and Forest Biology, National Research Council of Italy, Via Pietro Castellino 111, 80131 Naples, Italy)

  • Susana M. Paixão

    (LNEG, Laboratório Nacional de Energia e Geologia, Unidade de Bioenergia, Estrada do Paço do Lumiar, 1649-038 Lisboa, Portugal)

  • Luís Alves

    (LNEG, Laboratório Nacional de Energia e Geologia, Unidade de Bioenergia, Estrada do Paço do Lumiar, 1649-038 Lisboa, Portugal)

  • Francesco La Cara

    (Institute of Agro-Environmental and Forest Biology, National Research Council of Italy, Via Pietro Castellino 111, 80131 Naples, Italy)

  • Patrícia Moura

    (LNEG, Laboratório Nacional de Energia e Geologia, Unidade de Bioenergia, Estrada do Paço do Lumiar, 1649-038 Lisboa, Portugal)

Abstract

Chestnut shells (CS) are an agronomic waste generated from the peeling process of the chestnut fruit, which contain 2.7–5.2% ( w / w ) phenolic compounds and approximately 36% ( w / w ) polysaccharides. In contrast with current shell waste burning practices, this study proposes a CS biorefinery that integrates biomass pretreatment, recovery of bioactive molecules, and bioconversion of the lignocellulosic hydrolyzate, while optimizing materials reuse. The CS delignification and saccharification produced a crude hydrolyzate with 12.9 g/L of glucose and xylose, and 682 mg/L of gallic acid equivalents. The detoxification of the crude CS hydrolyzate with 5% ( w / v ) activated charcoal (AC) and repeated adsorption, desorption and AC reuse enabled 70.3% ( w / w ) of phenolic compounds recovery, whilst simultaneously retaining the soluble sugars in the detoxified hydrolyzate. The phenols radical scavenging activity (RSA) of the first AC eluate reached 51.8 ± 1.6%, which is significantly higher than that of the crude CS hydrolyzate (21.0 ± 1.1%). The fermentation of the detoxified hydrolyzate by C. butyricum produced 10.7 ± 0.2 mM butyrate and 63.9 mL H 2 /g of CS. Based on the obtained results, the CS biorefinery integrating two energy products (H 2 and calorific power from spent CS), two bioproducts (phenolic compounds and butyrate) and one material reuse (AC reuse) constitutes a valuable upgrading approach for this yet unexploited waste biomass.

Suggested Citation

  • Alessandra Morana & Giuseppe Squillaci & Susana M. Paixão & Luís Alves & Francesco La Cara & Patrícia Moura, 2017. "Development of an Energy Biorefinery Model for Chestnut ( Castanea sativa Mill.) Shells," Energies, MDPI, vol. 10(10), pages 1-14, September.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:10:p:1504-:d:113445
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/10/1504/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/10/1504/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Farshad Darvishi Harzevili & Serge Hiligsmann, 2017. "Microbial Fuels: Technologies and Applications," ULB Institutional Repository 2013/271293, ULB -- Universite Libre de Bruxelles.
    2. Kumar, G. & Bakonyi, P. & Periyasamy, S. & Kim, S.H. & Nemestóthy, N. & Bélafi-Bakó, K., 2015. "Lignocellulose biohydrogen: Practical challenges and recent progress," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 728-737.
    3. Sivagurunathan, Periyasamy & Kumar, Gopalakrishnan & Mudhoo, Ackmez & Rene, Eldon R. & Saratale, Ganesh Dattatraya & Kobayashi, Takuro & Xu, Kaiqin & Kim, Sang-Hyoun & Kim, Dong-Hoon, 2017. "Fermentative hydrogen production using lignocellulose biomass: An overview of pre-treatment methods, inhibitor effects and detoxification experiences," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 28-42.
    4. Ortigueira, Joana & Pinto, Tiago & Gouveia, Luísa & Moura, Patrícia, 2015. "Production and storage of biohydrogen during sequential batch fermentation of Spirogyra hydrolyzate by Clostridium butyricum," Energy, Elsevier, vol. 88(C), pages 528-536.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Εrmioni Meleti & Vasiliki Kossyva & Ioannis Maisoglou & Mariastela Vrontaki & Vasileios Manouras & Anastasia Tzereme & Maria Alexandraki & Michalis Koureas & Eleni Malissiova & Athanasios Manouras, 2024. "The Nutritional Benefits and Sustainable By-Product Utilization of Chestnuts: A Comprehensive Review," Agriculture, MDPI, vol. 14(12), pages 1-18, December.
    2. Paula A. Pinto & Rui M. F. Bezerra & Irene Fraga & Carla Amaral & Ana Sampaio & Albino A. Dias, 2022. "Solid-State Fermentation of Chestnut Shells and Effect of Explanatory Variables in Predictive Saccharification Models," IJERPH, MDPI, vol. 19(5), pages 1-10, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Guang & Wang, Jianlong, 2018. "Various additives for improving dark fermentative hydrogen production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 130-146.
    2. Łukajtis, Rafał & Hołowacz, Iwona & Kucharska, Karolina & Glinka, Marta & Rybarczyk, Piotr & Przyjazny, Andrzej & Kamiński, Marian, 2018. "Hydrogen production from biomass using dark fermentation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 665-694.
    3. Singh, Neeraj Kumar & Singh, Rajesh, 2022. "Co-factors applicability in hydrogen production from rice straw hydrolysate in a bioelectrochemical system," Energy, Elsevier, vol. 255(C).
    4. Shao, Weilan & Wang, Qiang & Rupani, Parveen Fatemeh & Krishnan, Santhana & Ahmad, Fiaz & Rezania, Shahabaldin & Rashid, Muhammad Adnan & Sha, Chong & Md Din, Mohd Fadhil, 2020. "Biohydrogen production via thermophilic fermentation: A prospective application of Thermotoga species," Energy, Elsevier, vol. 197(C).
    5. Basak, Bikram & Jeon, Byong-Hun & Kim, Tae Hyun & Lee, Jae-Cheol & Chatterjee, Pradip Kumar & Lim, Hankwon, 2020. "Dark fermentative hydrogen production from pretreated lignocellulosic biomass: Effects of inhibitory byproducts and recent trends in mitigation strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    6. Rafał Łukajtis & Karolina Kucharska & Iwona Hołowacz & Piotr Rybarczyk & Katarzyna Wychodnik & Edyta Słupek & Paulina Nowak & Marian Kamiński, 2018. "Comparison and Optimization of Saccharification Conditions of Alkaline Pre-Treated Triticale Straw for Acid and Enzymatic Hydrolysis Followed by Ethanol Fermentation," Energies, MDPI, vol. 11(3), pages 1-24, March.
    7. Antony V. Samrot & Deenadhayalan Rajalakshmi & Mahendran Sathiyasree & Subramanian Saigeetha & Kasirajan Kasipandian & Nachiyar Valli & Nellore Jayshree & Pandurangan Prakash & Nagarajan Shobana, 2023. "A Review on Biohydrogen Sources, Production Routes, and Its Application as a Fuel Cell," Sustainability, MDPI, vol. 15(16), pages 1-21, August.
    8. Elhambakhsh, Abbas & Van Duc Long, Nguyen & Lamichhane, Pradeep & Hessel, Volker, 2023. "Recent progress and future directions in plasma-assisted biomass conversion to hydrogen," Renewable Energy, Elsevier, vol. 218(C).
    9. Zagrodnik, Roman & Duber, Anna, 2024. "Continuous dark-photo fermentative H2 production from synthetic lignocellulose hydrolysate with different photoheterotrophic cultures: Sequential vs. co-culture processes," Energy, Elsevier, vol. 290(C).
    10. Singh, Harshita & Varanasi, Jhansi L. & Banerjee, Srijoni & Das, Debabrata, 2019. "Production of carbohydrate enrich microalgal biomass as a bioenergy feedstock," Energy, Elsevier, vol. 188(C).
    11. Sołowski, Gaweł & Shalaby, Marwa.S. & Abdallah, Heba & Shaban, Ahmed.M. & Cenian, Adam, 2018. "Production of hydrogen from biomass and its separation using membrane technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3152-3167.
    12. Satar, Ibdal & Daud, Wan Ramli Wan & Kim, Byung Hong & Somalu, Mahendra Rao & Ghasemi, Mostafa, 2017. "Immobilized mixed-culture reactor (IMcR) for hydrogen and methane production from glucose," Energy, Elsevier, vol. 139(C), pages 1188-1196.
    13. Elbeshbishy, Elsayed & Dhar, Bipro Ranjan & Nakhla, George & Lee, Hyung-Sool, 2017. "A critical review on inhibition of dark biohydrogen fermentation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 656-668.
    14. Luz Breton-Deval & Ilse Salinas-Peralta & Jaime Santiago Alarcón Aguirre & Belkis Sulbarán-Rangel & Kelly Joel Gurubel Tun, 2020. "Taxonomic Binning Approaches and Functional Characteristics of the Microbial Community during the Anaerobic Digestion of Hydrolyzed Corncob," Energies, MDPI, vol. 14(1), pages 1-14, December.
    15. Moniruzzaman, M. & Yaakob, Zahira & Khatun, Rahima, 2016. "Biotechnology for Jatropha improvement: A worthy exploration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1262-1277.
    16. Karim, Ahasanul & Islam, M. Amirul & Mishra, Puranjan & Yousuf, Abu & Faizal, Che Ku Mohammad & Khan, Md. Maksudur Rahman, 2021. "Technical difficulties of mixed culture driven waste biomass-based biohydrogen production: Sustainability of current pretreatment techniques and future prospective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    17. Zabed, H. & Sahu, J.N. & Boyce, A.N. & Faruq, G., 2016. "Fuel ethanol production from lignocellulosic biomass: An overview on feedstocks and technological approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 751-774.
    18. Ekwenna, Emeka Boniface & Wang, Yaodong & Roskilly, Anthony, 2023. "Bioenergy production from pretreated rice straw in Nigeria: An analysis of novel three-stage anaerobic digestion for hydrogen and methane co-generation," Applied Energy, Elsevier, vol. 348(C).
    19. Morsy, Fatthy Mohamed & Ibrahim, Samir Hag, 2016. "Concomitant hydrolysis of sucrose by the long half-life time yeast invertase and hydrogen production by the hydrogen over-producing Escherichia coli HD701," Energy, Elsevier, vol. 109(C), pages 412-419.
    20. Przemysław Liczbiński & Sebastian Borowski, 2021. "Co-Digestion of Kitchen Waste with Grass and Leaves after Hyperthermophilic Pretreatment for Methane and Hydrogen Production," Energies, MDPI, vol. 14(18), pages 1-9, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:10:p:1504-:d:113445. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.