IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v239y2022ipcs0360544221024361.html
   My bibliography  Save this article

Improvement in biohydrogen and volatile fatty acid production from seaweed through addition of conductive carbon materials depends on the properties of the conductive materials

Author

Listed:
  • Deng, Chen
  • Lin, Richen
  • Kang, Xihui
  • Wu, Benteng
  • Wall, David
  • Murphy, Jerry D.

Abstract

Fermentative production of biohydrogen and volatile fatty acids (VFAs) from advanced feedstocks such as seaweed provides opportunities in the carbon-neutral bioeconomy. The gap in the state of the art exists in overcoming both the low fermentation efficiency associated with the rigid structure of seaweed and the inefficient metabolic electron transfer within the microbial communities. This study evaluated the effects of carbonaceous additives (such as graphene and various biochars) on biohydrogen fermentation of glucose, cellulose, and the brown seaweed Laminaria digitata. The impacts of carbonaceous additives varied significantly in terms of hydrogen production, VFA profiles, and microbial communities. Graphene and wood-derived biochar (Wood_Biochar) were shown to be superior to draff-derived biochars. In the fermentation of L. digitata, graphene and Wood_Biochar significantly reduced the lag-phase time by 47% and 49%, respectively. Microbial analysis revealed that the enhanced fermentation was ascribed to the enrichment of Thermoanaerobacterium genus in response to carbonaceous additives. Kinetic correlations between the fermentation parameters and the properties of the additives suggested that the graphitic structure and electrical conductivity might play a crucial role in facilitating the fermentation. The mechanisms might be ascribed to (1) the supported biofilm growth and (2) enhancement in microbial electron transfer induced by the additives.

Suggested Citation

  • Deng, Chen & Lin, Richen & Kang, Xihui & Wu, Benteng & Wall, David & Murphy, Jerry D., 2022. "Improvement in biohydrogen and volatile fatty acid production from seaweed through addition of conductive carbon materials depends on the properties of the conductive materials," Energy, Elsevier, vol. 239(PC).
  • Handle: RePEc:eee:energy:v:239:y:2022:i:pc:s0360544221024361
    DOI: 10.1016/j.energy.2021.122188
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221024361
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.122188?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guo, Xiaobo & Chen, Huize & Zhu, Xianqing & Xia, Ao & Liao, Qiang & Huang, Yun & Zhu, Xun, 2021. "Revealing the role of conductive materials on facilitating direct interspecies electron transfer in syntrophic methanogenesis: A thermodynamic analysis," Energy, Elsevier, vol. 229(C).
    2. Deng, Chen & Lin, Richen & Kang, Xihui & Wu, Benteng & O’Shea, Richard & Murphy, Jerry D., 2020. "Improving gaseous biofuel yield from seaweed through a cascading circular bioenergy system integrating anaerobic digestion and pyrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    3. Chenhui Yang & Hüsnü Aslan & Peng Zhang & Shoujun Zhu & Yong Xiao & Lixiang Chen & Nasar Khan & Thomas Boesen & Yuanlin Wang & Yang Liu & Lei Wang & Ye Sun & Yujie Feng & Flemming Besenbacher & Feng Z, 2020. "Carbon dots-fed Shewanella oneidensis MR-1 for bioelectricity enhancement," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    4. Silva, V. & Ratti, R.P. & Sakamoto, I.K. & Andrade, M.V.F. & Varesche, M.B.A., 2018. "Biotechnological products in batch reactors obtained from cellulose, glucose and xylose using thermophilic anaerobic consortium," Renewable Energy, Elsevier, vol. 125(C), pages 537-545.
    5. Xia, Ao & Cheng, Jun & Song, Wenlu & Su, Huibo & Ding, Lingkan & Lin, Richen & Lu, Hongxiang & Liu, Jianzhong & Zhou, Junhu & Cen, Kefa, 2015. "Fermentative hydrogen production using algal biomass as feedstock," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 209-230.
    6. Yang, Guang & Wang, Jianlong, 2018. "Various additives for improving dark fermentative hydrogen production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 130-146.
    7. Song, Bing & Lin, Richen & Lam, Chun Ho & Wu, Hao & Tsui, To-Hung & Yu, Yun, 2021. "Recent advances and challenges of inter-disciplinary biomass valorization by integrating hydrothermal and biological techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    8. Chiappero, Marco & Norouzi, Omid & Hu, Mingyu & Demichelis, Francesca & Berruti, Franco & Di Maria, Francesco & Mašek, Ondřej & Fiore, Silvia, 2020. "Review of biochar role as additive in anaerobic digestion processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    9. Sorgulu, Fatih & Dincer, Ibrahim, 2021. "Development of a hythane based cogeneration system integrated with gasification and landfill subsystems," Energy, Elsevier, vol. 215(PA).
    10. Lui, Jade & Chen, Wei-Hsin & Tsang, Daniel C.W. & You, Siming, 2020. "A critical review on the principles, applications, and challenges of waste-to-hydrogen technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    11. Tabassum, Muhammad Rizwan & Xia, Ao & Murphy, Jerry D., 2017. "Potential of seaweed as a feedstock for renewable gaseous fuel production in Ireland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 136-146.
    12. Ding, Lingkan & Chan Gutierrez, Enrique & Cheng, Jun & Xia, Ao & O'Shea, Richard & Guneratnam, Amita Jacob & Murphy, Jerry D., 2018. "Assessment of continuous fermentative hydrogen and methane co-production using macro- and micro-algae with increasing organic loading rate," Energy, Elsevier, vol. 151(C), pages 760-770.
    13. Fan Zhang, 2019. "In the Dark," World Bank Publications - Books, The World Bank Group, number 30923.
    14. Sun, Chihe & Xia, Ao & Liao, Qiang & Fu, Qian & Huang, Yun & Zhu, Xun & Wei, Pengfei & Lin, Richen & Murphy, Jerry D., 2018. "Improving production of volatile fatty acids and hydrogen from microalgae and rice residue: Effects of physicochemical characteristics and mix ratios," Applied Energy, Elsevier, vol. 230(C), pages 1082-1092.
    15. Masebinu, S.O. & Akinlabi, E.T. & Muzenda, E. & Aboyade, A.O., 2019. "A review of biochar properties and their roles in mitigating challenges with anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 291-307.
    16. Shao, Weilan & Wang, Qiang & Rupani, Parveen Fatemeh & Krishnan, Santhana & Ahmad, Fiaz & Rezania, Shahabaldin & Rashid, Muhammad Adnan & Sha, Chong & Md Din, Mohd Fadhil, 2020. "Biohydrogen production via thermophilic fermentation: A prospective application of Thermotoga species," Energy, Elsevier, vol. 197(C).
    17. Davis, Steven J & Lewis, Nathan S. & Shaner, Matthew & Aggarwal, Sonia & Arent, Doug & Azevedo, Inês & Benson, Sally & Bradley, Thomas & Brouwer, Jack & Chiang, Yet-Ming & Clack, Christopher T.M. & Co, 2018. "Net-Zero Emissions Energy Systems," Institute of Transportation Studies, Working Paper Series qt7qv6q35r, Institute of Transportation Studies, UC Davis.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Singh, Neeraj Kumar & Singh, Rajesh, 2022. "Co-factors applicability in hydrogen production from rice straw hydrolysate in a bioelectrochemical system," Energy, Elsevier, vol. 255(C).
    2. Deng, Chen & Kang, Xihui & Lin, Richen & Wu, Benteng & Ning, Xue & Wall, David & Murphy, Jerry D., 2023. "Boosting biogas production from recalcitrant lignin-based feedstock by adding lignin-derived carbonaceous materials within the anaerobic digestion process," Energy, Elsevier, vol. 278(PA).
    3. Wu, Benteng & Lin, Richen & Bose, Archishman & Huerta, Jorge Diaz & Kang, Xihui & Deng, Chen & Murphy, Jerry D., 2023. "Economic and environmental viability of biofuel production from organic wastes: A pathway towards competitive carbon neutrality," Energy, Elsevier, vol. 285(C).
    4. Zhang, Zexi & Ding, Ke & Ma, Xiaojun & Tang, Shuai & Wang, Zixin & Lu, Haifeng & Jiang, Weizhong & Si, Buchun, 2023. "Hydrodynamic design of down-flow packed bed reactor regulated the biohydrogen production and microbial enrichment," Energy, Elsevier, vol. 271(C).
    5. Shabarish Shankaran & Tamilarasan Karuppiah & Rajesh Banu Jeyakumar & Godvin Sharmila Vincent, 2023. "Statistical Optimization of Chemo Sonic Liquefaction in Macroalgae for Biohydrogen Generation—An Energy-Effective Approach," Energies, MDPI, vol. 16(7), pages 1-15, March.
    6. Sun, Xun & Liu, Shuai & Manickam, Sivakumar & Tao, Yang & Yoon, Joon Yong & Xuan, Xiaoxu, 2023. "Intensification of biodiesel production by hydrodynamic cavitation: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kumar, A. Naresh & Dissanayake, Pavani Dulanja & Masek, Ondrej & Priya, Anshu & Ki Lin, Carol Sze & Ok, Yong Sik & Kim, Sang-Hyoun, 2021. "Recent trends in biochar integration with anaerobic fermentation: Win-win strategies in a closed-loop," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    2. Patel, Sanjay K.S. & Das, Devashish & Kim, Sun Chang & Cho, Byung-Kwan & Kalia, Vipin Chandra & Lee, Jung-Kul, 2021. "Integrating strategies for sustainable conversion of waste biomass into dark-fermentative hydrogen and value-added products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    3. Wu, Benteng & Lin, Richen & O'Shea, Richard & Deng, Chen & Rajendran, Karthik & Murphy, Jerry D., 2021. "Production of advanced fuels through integration of biological, thermo-chemical and power to gas technologies in a circular cascading bio-based system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    4. Deng, Chen & Kang, Xihui & Lin, Richen & Wu, Benteng & Ning, Xue & Wall, David & Murphy, Jerry D., 2023. "Boosting biogas production from recalcitrant lignin-based feedstock by adding lignin-derived carbonaceous materials within the anaerobic digestion process," Energy, Elsevier, vol. 278(PA).
    5. Wang, Xuezhi & Lei, Zhongfang & Shimizu, Kazuya & Zhang, Zhenya & Lee, Duu-Jong, 2021. "Recent advancements in nanobubble water technology and its application in energy recovery from organic solid wastes towards a greater environmental friendliness of anaerobic digestion system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    6. Jessica Quintana-Najera & A. John Blacker & Louise A. Fletcher & Andrew B. Ross, 2023. "Understanding the Influence of Biochar Augmentation in Anaerobic Digestion by Principal Component Analysis," Energies, MDPI, vol. 16(6), pages 1-18, March.
    7. Sun, Chihe & Liao, Qiang & Xia, Ao & Fu, Qian & Huang, Yun & Zhu, Xianqing & Zhu, Xun & Wang, Zhengxin, 2020. "Degradation and transformation of furfural derivatives from hydrothermal pre-treated algae and lignocellulosic biomass during hydrogen fermentation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    8. Soares, Juliana Ferreira & Confortin, Tássia Carla & Todero, Izelmar & Mayer, Flávio Dias & Mazutti, Marcio Antonio, 2020. "Dark fermentative biohydrogen production from lignocellulosic biomass: Technological challenges and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    9. Mosleh Uddin, Md & Wen, Zhiyou & Mba Wright, Mark, 2022. "Techno-economic and environmental impact assessment of using corn stover biochar for manure derived renewable natural gas production," Applied Energy, Elsevier, vol. 321(C).
    10. Tayibi, S. & Monlau, F. & Bargaz, A. & Jimenez, R. & Barakat, A., 2021. "Synergy of anaerobic digestion and pyrolysis processes for sustainable waste management: A critical review and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    11. Song, Bing & Lin, Richen & Lam, Chun Ho & Wu, Hao & Tsui, To-Hung & Yu, Yun, 2021. "Recent advances and challenges of inter-disciplinary biomass valorization by integrating hydrothermal and biological techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    12. Deng, Chen & Lin, Richen & Kang, Xihui & Wu, Benteng & O’Shea, Richard & Murphy, Jerry D., 2020. "Improving gaseous biofuel yield from seaweed through a cascading circular bioenergy system integrating anaerobic digestion and pyrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    13. Wang, Hui & Zeng, Shufang & Pan, Xiaoli & Liu, Lei & Chen, Yunjie & Tang, Jiawei & Luo, Feng, 2022. "Bioelectrochemically assisting anaerobic digestion enhanced methane production under low-temperature," Renewable Energy, Elsevier, vol. 194(C), pages 1071-1083.
    14. Stede, Jan & Pauliuk, Stefan & Hardadi, Gilang & Neuhoff, Karsten, 2021. "Carbon pricing of basic materials: Incentives and risks for the value chain and consumers," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 189.
    15. Josefine A. Olsson & Sabbie A. Miller & Mark G. Alexander, 2023. "Near-term pathways for decarbonizing global concrete production," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    16. Xianghua Jiang & Xifang Cao, 2022. "Darboux transformation and novel solitons of a coupled system," Indian Journal of Pure and Applied Mathematics, Springer, vol. 53(2), pages 413-424, June.
    17. Isaac Holmes-Gentle & Saurabh Tembhurne & Clemens Suter & Sophia Haussener, 2023. "Kilowatt-scale solar hydrogen production system using a concentrated integrated photoelectrochemical device," Nature Energy, Nature, vol. 8(6), pages 586-596, June.
    18. Ren, Lei & Zhou, Sheng & Peng, Tianduo & Ou, Xunmin, 2022. "Greenhouse gas life cycle analysis of China's fuel cell medium- and heavy-duty trucks under segmented usage scenarios and vehicle types," Energy, Elsevier, vol. 249(C).
    19. Sim, Xue Yan & Tan, Jian Ping & He, Ning & Yeap, Swee Keong & Hui, Yew Woh & Luthfi, Abdullah Amru Indera & Manaf, Shareena Fairuz Abdul & Bukhari, Nurul Adela & Jamali, Nur Syakina, 2023. "Unraveling the effect of redox potential on dark fermentative hydrogen production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    20. Ángel Galán-Martín & Daniel Vázquez & Selene Cobo & Niall Dowell & José Antonio Caballero & Gonzalo Guillén-Gosálbez, 2021. "Delaying carbon dioxide removal in the European Union puts climate targets at risk," Nature Communications, Nature, vol. 12(1), pages 1-12, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:239:y:2022:i:pc:s0360544221024361. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.