IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v138y2019icp964-970.html
   My bibliography  Save this article

Effect of temperature on the fermentation of starch by two high efficient H2 producers

Author

Listed:
  • Ma, Hanxiao
  • Su, Haijia

Abstract

The batch fermentative hydrogen production using starch was conducted to investigate the influence of temperature (25 °C-40 °C) on the co-cultures system of Bacillus cereus ATCC 14579 (T) [Strain A] and Brevundimonas naejangsanensis BIO-TAS2-2(T) [Strain B]. The results showed that the optimal temperature for hydrogen production was 35 °C in both the sole and the mixed culture fermentation. At this temperature, the co-culturing system increased the substrate consumption rate by 34 % and 70 % compared with the Strain A and Strain B fermentation, respectively. The co-culturing system enhanced the hydrogen production yield by 52 % and 62 % compared with the Strain A and Strain B fermentation, respectively. The analysis of soluble metabolites during the fermentation process indicated that the mixed acid fermentation conducted in two strains and co-culturing system was dominated by butyric acid type fermentation at the optimal temperature. The Formate pathway probably exists in Strain A, and the PFOR pathway probably exists in Strain B. Both strains A and B play a synergistic role in hydrogen production at 35 °C using starch as substrate.

Suggested Citation

  • Ma, Hanxiao & Su, Haijia, 2019. "Effect of temperature on the fermentation of starch by two high efficient H2 producers," Renewable Energy, Elsevier, vol. 138(C), pages 964-970.
  • Handle: RePEc:eee:renene:v:138:y:2019:i:c:p:964-970
    DOI: 10.1016/j.renene.2019.01.126
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119301405
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.01.126?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Guang & Wang, Jianlong, 2018. "Various additives for improving dark fermentative hydrogen production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 130-146.
    2. Ma, Shenghua & Wang, Hui & Wang, Yu & Bu, Huaiyu & Bai, Jinbo, 2011. "Bio-hydrogen production from cornstalk wastes by orthogonal design method," Renewable Energy, Elsevier, vol. 36(2), pages 709-713.
    3. Luo, Gang & Xie, Li & Zou, Zhonghai & Zhou, Qi & Wang, Jing-Yuan, 2010. "Fermentative hydrogen production from cassava stillage by mixed anaerobic microflora: Effects of temperature and pH," Applied Energy, Elsevier, vol. 87(12), pages 3710-3717, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yuanqing & Jin, Fangming & Zeng, Xu & Ma, Cuixiang & Wang, Fengwen & Yao, Guodong & Jing, Zhenzi, 2013. "Catalytic activity of Ni3S2 and effects of reactor wall in hydrogen production from water with hydrogen sulphide as a reducer under hydrothermal conditions," Applied Energy, Elsevier, vol. 104(C), pages 306-309.
    2. Azman, Nadia Farhana & Abdeshahian, Peyman & Kadier, Abudukeremu & Shukor, Hafiza & Al-Shorgani, Najeeb Kaid Nasser & Hamid, Aidil Abdul & Kalil, Mohd Sahaid, 2016. "Utilization of palm kernel cake as a renewable feedstock for fermentative hydrogen production," Renewable Energy, Elsevier, vol. 93(C), pages 700-708.
    3. Kumar, G. & Bakonyi, P. & Periyasamy, S. & Kim, S.H. & Nemestóthy, N. & Bélafi-Bakó, K., 2015. "Lignocellulose biohydrogen: Practical challenges and recent progress," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 728-737.
    4. Sánchez, Antonio Santos & Silva, Yuri Lopes & Kalid, Ricardo Araújo & Cohim, Eduardo & Torres, Ednildo Andrade, 2017. "Waste bio-refineries for the cassava starch industry: New trends and review of alternatives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1265-1275.
    5. Singh, Neeraj Kumar & Singh, Rajesh, 2022. "Co-factors applicability in hydrogen production from rice straw hydrolysate in a bioelectrochemical system," Energy, Elsevier, vol. 255(C).
    6. Ghimire, Anish & Frunzo, Luigi & Pirozzi, Francesco & Trably, Eric & Escudie, Renaud & Lens, Piet N.L. & Esposito, Giovanni, 2015. "A review on dark fermentative biohydrogen production from organic biomass: Process parameters and use of by-products," Applied Energy, Elsevier, vol. 144(C), pages 73-95.
    7. Wieczorek, Nils & Kucuker, Mehmet Ali & Kuchta, Kerstin, 2014. "Fermentative hydrogen and methane production from microalgal biomass (Chlorella vulgaris) in a two-stage combined process," Applied Energy, Elsevier, vol. 132(C), pages 108-117.
    8. Zou, Shuzhen & Wang, Hui & Wang, Xiaojiao & Zhou, Sha & Li, Xue & Feng, Yongzhong, 2016. "Application of experimental design techniques in the optimization of the ultrasonic pretreatment time and enhancement of methane production in anaerobic co-digestion," Applied Energy, Elsevier, vol. 179(C), pages 191-202.
    9. Qin, Yu & Wu, Jing & Xiao, Benyi & Cong, Ming & Hojo, Toshimasa & Cheng, Jun & Li, Yu-You, 2019. "Strategy of adjusting recirculation ratio for biohythane production via recirculated temperature-phased anaerobic digestion of food waste," Energy, Elsevier, vol. 179(C), pages 1235-1245.
    10. Zhang, Yan & Zhang, Fang & Chen, Man & Chu, Pei-Na & Ding, Jing & Zeng, Raymond J., 2013. "Hydrogen supersaturation in extreme-thermophilic (70°C) mixed culture fermentation," Applied Energy, Elsevier, vol. 109(C), pages 213-219.
    11. Soltan, Mohamed & Elsamadony, Mohamed & Tawfik, Ahmed, 2017. "Biological hydrogen promotion via integrated fermentation of complex agro-industrial wastes," Applied Energy, Elsevier, vol. 185(P1), pages 929-938.
    12. Wong, Y.M. & Juan, J.C. & Ting, Adeline & Wu, T.Y., 2014. "High efficiency bio-hydrogen production from glucose revealed in an inoculum of heat-pretreated landfill leachate sludge," Energy, Elsevier, vol. 72(C), pages 628-635.
    13. Qiao Wang & Huan Li & Kai Feng & Jianguo Liu, 2020. "Oriented Fermentation of Food Waste towards High-Value Products: A Review," Energies, MDPI, vol. 13(21), pages 1-29, October.
    14. Shi, Xian-Yang & Li, Wen-Wei & Yu, Han-Qing, 2014. "Key parameters governing biological hydrogen production from benzoate by Rhodopseudomonas capsulata," Applied Energy, Elsevier, vol. 133(C), pages 121-126.
    15. Elsamadony, M. & Tawfik, A. & Suzuki, M., 2015. "Surfactant-enhanced biohydrogen production from organic fraction of municipal solid waste (OFMSW) via dry anaerobic digestion," Applied Energy, Elsevier, vol. 149(C), pages 272-282.
    16. Jiraprasertwong, Achiraya & Maitriwong, Kiatchai & Chavadej, Sumaeth, 2019. "Production of biogas from cassava wastewater using a three-stage upflow anaerobic sludge blanket (UASB) reactor," Renewable Energy, Elsevier, vol. 130(C), pages 191-205.
    17. Khan, Mohd Atiqueuzzaman & Ngo, Huu Hao & Guo, Wenshan & Liu, Yiwen & Zhang, Xinbo & Guo, Jianbo & Chang, Soon Woong & Nguyen, Dinh Duc & Wang, Jie, 2018. "Biohydrogen production from anaerobic digestion and its potential as renewable energy," Renewable Energy, Elsevier, vol. 129(PB), pages 754-768.
    18. Akroum-Amrouche, Dahbia & Abdi, Nadia & Lounici, Hakim & Mameri, Nabil, 2011. "Effect of physico-chemical parameters on biohydrogen production and growth characteristics by batch culture of Rhodobacter sphaeroides CIP 60.6," Applied Energy, Elsevier, vol. 88(6), pages 2130-2135, June.
    19. Ndayisenga, Fabrice & Yu, Zhisheng & Zheng, Jianzhong & Wang, Bobo & Liang, Hongxia & Phulpoto, Irfan Ali & Habiyakare, Telesphore & Zhou, Dandan, 2021. "Microbial electrohydrogenesis cell and dark fermentation integrated system enhances biohydrogen production from lignocellulosic agricultural wastes: Substrate pretreatment towards optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    20. Deng, Chen & Lin, Richen & Kang, Xihui & Wu, Benteng & Wall, David & Murphy, Jerry D., 2022. "Improvement in biohydrogen and volatile fatty acid production from seaweed through addition of conductive carbon materials depends on the properties of the conductive materials," Energy, Elsevier, vol. 239(PC).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:138:y:2019:i:c:p:964-970. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.