IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v195y2020ics0360544220301833.html
   My bibliography  Save this article

Fractionation of corn stover by two-step pretreatment for production of ethanol, furfural, and lignin

Author

Listed:
  • Li, Wen-Chao
  • Zhang, Sen-Jia
  • Xu, Tao
  • Sun, Mei-Qing
  • Zhu, Jia-Qing
  • Zhong, Cheng
  • Li, Bing-Zhi
  • Yuan, Ying-Jin

Abstract

The comprehensive utilization of lignocellulose is great importance for improving the economic feasibility of biomass refining industry. Here, we established a two-step pretreatment process for fractionation and production of multiple products (furfural, ethanol, and lignin) from corn stover (CS). In the first step, H2SO4 pretreatment was used to remove hemicellulose and the effect of solid/liquid ratio (SLR) was investigated. The hemicellulose containing washing liquor was treated for furfural production without any additional catalyst and the maximum furfural yield (46.5%) was obtained at 210 °C for 20 min. It was found that the physical barrier of lignin was its mainly inhibition mechanism that limited the enzymatic digestibility of H2SO4 pretreated solid. The following NaOH pretreatment removed 90.8% of lignin and resulted in excellent glucan enzymatic conversion (98.6%). A large amount of acid insoluble lignin (AIL, 17.0 g/100 g CS), p-coumaric acid (1416.9 mg/100 g CS) and ferulic acid (249.4 mg/100 g CS) were observed in NaOH pretreatment liquor. The two-step pretreated CS produced up to 115.3 g/L of ethanol during simultaneous saccharification and fermentation (SSF) at 25% (w/w) solid loading. These results demonstrated that the successive H2SO4 and NaOH pretreatment was an efficient method for fractionation and integrative utilization of CS.

Suggested Citation

  • Li, Wen-Chao & Zhang, Sen-Jia & Xu, Tao & Sun, Mei-Qing & Zhu, Jia-Qing & Zhong, Cheng & Li, Bing-Zhi & Yuan, Ying-Jin, 2020. "Fractionation of corn stover by two-step pretreatment for production of ethanol, furfural, and lignin," Energy, Elsevier, vol. 195(C).
  • Handle: RePEc:eee:energy:v:195:y:2020:i:c:s0360544220301833
    DOI: 10.1016/j.energy.2020.117076
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220301833
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.117076?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Byun, Jaewon & Han, Jeehoon, 2019. "Catalytic conversion of corn stover for 〈gamma〉-valerolactone production by two different solvent strategies: Techno-economic assessment," Energy, Elsevier, vol. 175(C), pages 546-553.
    2. Li, Wen-Chao & Li, Xia & Zhu, Jia-Qing & Qin, Lei & Li, Bing-Zhi & Yuan, Ying-Jin, 2018. "Improving xylose utilization and ethanol production from dry dilute acid pretreated corn stover by two-step and fed-batch fermentation," Energy, Elsevier, vol. 157(C), pages 877-885.
    3. Barakat, Abdellatif & Chuetor, Santi & Monlau, Florian & Solhy, Abderrahim & Rouau, Xavier, 2014. "Eco-friendly dry chemo-mechanical pretreatments of lignocellulosic biomass: Impact on energy and yield of the enzymatic hydrolysis," Applied Energy, Elsevier, vol. 113(C), pages 97-105.
    4. Molaverdi, Maryam & Karimi, Keikhosro & Mirmohamadsadeghi, Safoora, 2019. "Improvement of dry simultaneous saccharification and fermentation of rice straw to high concentration ethanol by sodium carbonate pretreatment," Energy, Elsevier, vol. 167(C), pages 654-660.
    5. Pan, Shu-Yuan & Lin, Yupo J. & Snyder, Seth W. & Ma, Hwong-Wen & Chiang, Pen-Chi, 2016. "Assessing the environmental impacts and water consumption of pretreatment and conditioning processes of corn stover hydrolysate liquor in biorefineries," Energy, Elsevier, vol. 116(P1), pages 436-444.
    6. Bhutto, Abdul Waheed & Qureshi, Khadija & Harijan, Khanji & Abro, Rashid & Abbas, Tauqeer & Bazmi, Aqeel Ahmed & Karim, Sadia & Yu, Guangren, 2017. "Insight into progress in pre-treatment of lignocellulosic biomass," Energy, Elsevier, vol. 122(C), pages 724-745.
    7. Cardona, Eliana & Llano, Biviana & Peñuela, Mariana & Peña, Juan & Rios, Luis Alberto, 2018. "Liquid-hot-water pretreatment of palm-oil residues for ethanol production: An economic approach to the selection of the processing conditions," Energy, Elsevier, vol. 160(C), pages 441-451.
    8. Ryu, Hae Won & Lee, Hyung Won & Jae, Jungho & Park, Young-Kwon, 2019. "Catalytic pyrolysis of lignin for the production of aromatic hydrocarbons: Effect of magnesium oxide catalyst," Energy, Elsevier, vol. 179(C), pages 669-675.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cheng, Jie & Hu, Sheng-Chun & Geng, Zeng-Chao & Zhu, Ming-Qiang, 2022. "Effect of structural changes of lignin during the microwave-assisted alkaline/ethanol pretreatment on cotton stalk for an effective enzymatic hydrolysis," Energy, Elsevier, vol. 254(PB).
    2. Singh, Neeraj Kumar & Singh, Rajesh, 2022. "Co-factors applicability in hydrogen production from rice straw hydrolysate in a bioelectrochemical system," Energy, Elsevier, vol. 255(C).
    3. Chong, Ting Yen & Cheah, Siang Aun & Ong, Chin Tye & Wong, Lee Yi & Goh, Chern Rui & Tan, Inn Shi & Foo, Henry Chee Yew & Lam, Man Kee & Lim, Steven, 2020. "Techno-economic evaluation of third-generation bioethanol production utilizing the macroalgae waste: A case study in Malaysia," Energy, Elsevier, vol. 210(C).
    4. So-Yeon Jeong & Jae-Won Lee, 2021. "Effects of Sugars and Degradation Products Derived from Lignocellulosic Biomass on Maleic Acid Production," Energies, MDPI, vol. 14(4), pages 1-11, February.
    5. Mario Alberto Yaverino-Gutiérrez & Alán Yazid Chávez-Hita Wong & Lizbeth Alejandra Ibarra-Muñoz & Ana Cristina Figueroa Chávez & Jazel Doménica Sosa-Martínez & Ana Sofia Tagle-Pedroza & Javier Ulises , 2024. "Perspectives and Progress in Bioethanol Processing and Social Economic Impacts," Sustainability, MDPI, vol. 16(2), pages 1-31, January.
    6. Sha, Hao & Wang, Qing & Dong, Zheng & Cao, Shengxian & Zhao, Bo & Wang, Gong & Duan, Jie, 2024. "NaOH-urea pretreatment enhanced H2 and CH4 yields via optimizing mixed alkali ratio, pretreatment time, and organic loading rate during anaerobic digestion of corn stover," Energy, Elsevier, vol. 288(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu, Jie & Song, Fuyu & Liu, Hao & Chang, Chengcheng & Cheng, Yi & Wang, Haisong, 2021. "Production of high concentration bioethanol from reed by combined liquid hot water and sodium carbonate-oxygen pretreatment," Energy, Elsevier, vol. 217(C).
    2. Rezania, Shahabaldin & Oryani, Bahareh & Cho, Jinwoo & Talaiekhozani, Amirreza & Sabbagh, Farzaneh & Hashemi, Beshare & Rupani, Parveen Fatemeh & Mohammadi, Ali Akbar, 2020. "Different pretreatment technologies of lignocellulosic biomass for bioethanol production: An overview," Energy, Elsevier, vol. 199(C).
    3. Raud, M. & Kikas, T. & Sippula, O. & Shurpali, N.J., 2019. "Potentials and challenges in lignocellulosic biofuel production technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 44-56.
    4. Rouches, E. & Herpoël-Gimbert, I. & Steyer, J.P. & Carrere, H., 2016. "Improvement of anaerobic degradation by white-rot fungi pretreatment of lignocellulosic biomass: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 179-198.
    5. Hakimian, Hanie & Pyo, Sumin & Kim, Young-Min & Jae, Jungho & Show, Pau Loke & Rhee, Gwang Hoon & Chen, Wei-Hsin & Park, Young-Kwon, 2022. "Increased aromatics production by co-feeding waste oil sludge to the catalytic pyrolysis of cellulose," Energy, Elsevier, vol. 239(PD).
    6. Jin, Wenxiang & Chen, Ling & Hu, Meng & Sun, Dan & Li, Ao & Li, Ying & Hu, Zhen & Zhou, Shiguang & Tu, Yuanyuan & Xia, Tao & Wang, Yanting & Xie, Guosheng & Li, Yanbin & Bai, Baowei & Peng, Liangcai, 2016. "Tween-80 is effective for enhancing steam-exploded biomass enzymatic saccharification and ethanol production by specifically lessening cellulase absorption with lignin in common reed," Applied Energy, Elsevier, vol. 175(C), pages 82-90.
    7. Kargbo, Hannah & Harris, Jonathan Stuart & Phan, Anh N., 2021. "“Drop-in” fuel production from biomass: Critical review on techno-economic feasibility and sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    8. Yoon, Kwangsuk & Lee, Sang Soo & Ok, Yong Sik & Kwon, Eilhann E. & Song, Hocheol, 2019. "Enhancement of syngas for H2 production via catalytic pyrolysis of orange peel using CO2 and bauxite residue," Applied Energy, Elsevier, vol. 254(C).
    9. Mariana S. T. Amândio & Joana M. Pereira & Jorge M. S. Rocha & Luísa S. Serafim & Ana M. R. B. Xavier, 2022. "Getting Value from Pulp and Paper Industry Wastes: On the Way to Sustainability and Circular Economy," Energies, MDPI, vol. 15(11), pages 1-31, June.
    10. Yan, Beibei & Li, Songjiang & Cao, Xingsijin & Zhu, Xiaochao & Li, Jian & Zhou, Shengquan & Zhao, Juan & Sun, Yunan & Chen, Guanyi, 2023. "Flue gas torrefaction integrated with gasification based on the circulation of Mg-additive," Applied Energy, Elsevier, vol. 333(C).
    11. Shen, Guannan & Yuan, Xinchuan & Chen, Sitong & Liu, Shuangmei & Jin, Mingjie, 2022. "High titer cellulosic ethanol production from sugarcane bagasse via DLCA pretreatment and process development without washing/detoxifying pretreated biomass," Renewable Energy, Elsevier, vol. 186(C), pages 904-913.
    12. Schipfer, Fabian & Kranzl, Lukas, 2019. "Techno-economic evaluation of biomass-to-end-use chains based on densified bioenergy carriers (dBECs)," Applied Energy, Elsevier, vol. 239(C), pages 715-724.
    13. Monlau, F. & Sambusiti, C. & Antoniou, N. & Barakat, A. & Zabaniotou, A., 2015. "A new concept for enhancing energy recovery from agricultural residues by coupling anaerobic digestion and pyrolysis process," Applied Energy, Elsevier, vol. 148(C), pages 32-38.
    14. Jin, Xianchun & Ma, Jiangshan & Song, Jianing & Liu, Gao-Qiang, 2021. "Promoted bioethanol production through fed-batch semisimultaneous saccharification and fermentation at a high biomass load of sodium carbonate-pretreated rice straw," Energy, Elsevier, vol. 226(C).
    15. Yang, Deshi & Huang, Jianpeng & Hu, Zhipeng & Qin, Shiqi & Mu, Jiaxin & Wang, Fengqiang & Zhang, Zhijun & Xie, Yanjun & Liu, Shouxin & Wang, Qingwen, 2024. "Catalytic pyrolysis of lignin to aromatic hydrocarbons over Nb/Al oxide catalyst," Energy, Elsevier, vol. 302(C).
    16. Sahu, Omprakash, 2021. "Appropriateness of rose (Rosa hybrida) for bioethanol conversion with enzymatic hydrolysis: Sustainable development on green fuel production," Energy, Elsevier, vol. 232(C).
    17. Tae Hoon Kim & Hyun Kwak & Tae Hyun Kim & Kyeong Keun Oh, 2020. "Extraction Behaviors of Lignin and Hemicellulose-Derived Sugars During Organosolv Fractionation of Agricultural Residues Using a Bench-Scale Ball Milling Reactor," Energies, MDPI, vol. 13(2), pages 1-15, January.
    18. Rooni, Vahur & Raud, Merlin & Kikas, Timo, 2017. "The freezing pre-treatment of lignocellulosic material: A cheap alternative for Nordic countries," Energy, Elsevier, vol. 139(C), pages 1-7.
    19. Ndayisenga, Fabrice & Yu, Zhisheng & Zheng, Jianzhong & Wang, Bobo & Liang, Hongxia & Phulpoto, Irfan Ali & Habiyakare, Telesphore & Zhou, Dandan, 2021. "Microbial electrohydrogenesis cell and dark fermentation integrated system enhances biohydrogen production from lignocellulosic agricultural wastes: Substrate pretreatment towards optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    20. Wang, Biao & Chen, Yasen & Chen, Wei & Hu, Junhao & Chang, Chun & Pang, Shusheng & Li, Pan, 2024. "Enhancement of aromatics and syngas production by co-pyrolysis of biomass and plastic waste using biochar-based catalysts in microwave field," Energy, Elsevier, vol. 293(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:195:y:2020:i:c:s0360544220301833. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.