IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v229y2021ics0360544221009579.html
   My bibliography  Save this article

Day-ahead scheduling of energy hubs with parking lots for electric vehicles considering uncertainties

Author

Listed:
  • Jordehi, A. Rezaee
  • Javadi, Mohammad Sadegh
  • Catalão, João P.S.

Abstract

Energy hubs (EHs) are units in which multiple energy carriers are converted, conditioned and stored to simultaneously supply different forms of energy demands. In this research, the objective is to develop a new stochastic model for unit commitment in EHs including an intelligent electric vehicle (EV) parking lot, boiler, photovoltaic (PV) module, fuel cell, absorption chiller, electric heat pump, electric/thermal/cooling storage systems, with electricity and natural gas (NG) as inputs and electricity, heat, cooling and NG as demands. The uncertainties of demands, PV power and initial energy of EV batteries are modeled with Monte Carlo Simulation. The effect of demand response and demand participation factors as well as effect of EVs and storage systems on EH operation are investigated. The results indicate that thermal demand response is more effective than electric and cooling demand response; as it decreases EH operation cost by 12%, while electric demand response and cooling demand response decrease it respectively by 9.3% and 4.2%. The results show that at low electric/thermal/cooling demand participation factors, an increase in participation factor sharply decreases EH operation cost, while the same amount of increase at higher participation factors leads to a smaller decrease in operation cost. The results also indicate that thermal storage system and cooling storage system have significant effect on reduction of EH operation cost, while the effect of electric storage system is trivial.

Suggested Citation

  • Jordehi, A. Rezaee & Javadi, Mohammad Sadegh & Catalão, João P.S., 2021. "Day-ahead scheduling of energy hubs with parking lots for electric vehicles considering uncertainties," Energy, Elsevier, vol. 229(C).
  • Handle: RePEc:eee:energy:v:229:y:2021:i:c:s0360544221009579
    DOI: 10.1016/j.energy.2021.120709
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221009579
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.120709?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Salehimaleh, Mohammad & Akbarimajd, Adel & Valipour, Khalil & Dejamkhooy, Abdolmajid, 2018. "Generalized modeling and optimal management of energy hub based electricity, heat and cooling demands," Energy, Elsevier, vol. 159(C), pages 669-685.
    2. Mansouri, Seyed Amir & Ahmarinejad, Amir & Javadi, Mohammad Sadegh & Catalão, João P.S., 2020. "Two-stage stochastic framework for energy hubs planning considering demand response programs," Energy, Elsevier, vol. 206(C).
    3. Jordehi, A. Rezaee, 2018. "How to deal with uncertainties in electric power systems? A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 145-155.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abdulnasser, Ghada & Ali, Abdelfatah & Shaaban, Mostafa F. & Mohamed, Essam E.M., 2024. "Optimal resource allocation and operation for smart energy hubs considering hydrogen storage systems and electric vehicles," Energy, Elsevier, vol. 295(C).
    2. Kandpal, Bakul & Pareek, Parikshit & Verma, Ashu, 2022. "A robust day-ahead scheduling strategy for EV charging stations in unbalanced distribution grid," Energy, Elsevier, vol. 249(C).
    3. Li, Ke & Ye, Ning & Li, Shuzhen & Wang, Haiyang & Zhang, Chenghui, 2023. "Distributed collaborative operation strategies in multi-agent integrated energy system considering integrated demand response based on game theory," Energy, Elsevier, vol. 273(C).
    4. Anna Auza & Ehsan Asadi & Behrang Chenari & Manuel Gameiro da Silva, 2023. "A Systematic Review of Uncertainty Handling Approaches for Electric Grids Considering Electrical Vehicles," Energies, MDPI, vol. 16(13), pages 1-25, June.
    5. Najafi, Arsalan & Pourakbari-Kasmaei, Mahdi & Jasinski, Michal & Lehtonen, Matti & Leonowicz, Zbigniew, 2021. "A hybrid decentralized stochastic-robust model for optimal coordination of electric vehicle aggregator and energy hub entities," Applied Energy, Elsevier, vol. 304(C).
    6. Javadi, Mohammad Sadegh & Esmaeel Nezhad, Ali & Jordehi, Ahmad Rezaee & Gough, Matthew & Santos, Sérgio F. & Catalão, João P.S., 2022. "Transactive energy framework in multi-carrier energy hubs: A fully decentralized model," Energy, Elsevier, vol. 238(PB).
    7. Jordehi, A. Rezaee & Javadi, Mohammad Sadegh & Shafie-khah, Miadreza & Catalão, João P.S., 2021. "Information gap decision theory (IGDT)-based robust scheduling of combined cooling, heat and power energy hubs," Energy, Elsevier, vol. 231(C).
    8. Tostado-Véliz, Marcos & Kamel, Salah & Hasanien, Hany M. & Arévalo, Paul & Turky, Rania A. & Jurado, Francisco, 2022. "A stochastic-interval model for optimal scheduling of PV-assisted multi-mode charging stations," Energy, Elsevier, vol. 253(C).
    9. Aslani, Mehrdad & Mashayekhi, Mehdi & Hashemi-Dezaki, Hamed & Ketabi, Abbas, 2022. "Robust optimal operation of energy hub incorporating integrated thermal and electrical demand response programs under various electric vehicle charging modes," Applied Energy, Elsevier, vol. 321(C).
    10. Luo, Lizi & He, Pinquan & Gu, Wei & Sheng, Wanxing & Liu, Keyan & Bai, Muke, 2022. "Temporal-spatial scheduling of electric vehicles in AC/DC distribution networks," Energy, Elsevier, vol. 255(C).
    11. Zhang, Bin & Hu, Weihao & Cao, Di & Ghias, Amer M.Y.M. & Chen, Zhe, 2023. "Novel Data-Driven decentralized coordination model for electric vehicle aggregator and energy hub entities in multi-energy system using an improved multi-agent DRL approach," Applied Energy, Elsevier, vol. 339(C).
    12. Saberi-Beglar, Kasra & Zare, Kazem & Seyedi, Heresh & Marzband, Mousa & Nojavan, Sayyad, 2023. "Risk-embedded scheduling of a CCHP integrated with electric vehicle parking lot in a residential energy hub considering flexible thermal and electrical loads," Applied Energy, Elsevier, vol. 329(C).
    13. Lankeshwara, Gayan & Sharma, Rahul & Yan, Ruifeng & Saha, Tapan K., 2022. "Control algorithms to mitigate the effect of uncertainties in residential demand management," Applied Energy, Elsevier, vol. 306(PA).
    14. Qiu, Dawei & Xue, Juxing & Zhang, Tingqi & Wang, Jianhong & Sun, Mingyang, 2023. "Federated reinforcement learning for smart building joint peer-to-peer energy and carbon allowance trading," Applied Energy, Elsevier, vol. 333(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiajia Li & Jinfu Liu & Peigang Yan & Xingshuo Li & Guowen Zhou & Daren Yu, 2021. "Operation Optimization of Integrated Energy System under a Renewable Energy Dominated Future Scene Considering Both Independence and Benefit: A Review," Energies, MDPI, vol. 14(4), pages 1-36, February.
    2. Lasemi, Mohammad Ali & Arabkoohsar, Ahmad & Hajizadeh, Amin & Mohammadi-ivatloo, Behnam, 2022. "A comprehensive review on optimization challenges of smart energy hubs under uncertainty factors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    3. Yuan, Guanxiu & Gao, Yan & Ye, Bei, 2021. "Optimal dispatching strategy and real-time pricing for multi-regional integrated energy systems based on demand response," Renewable Energy, Elsevier, vol. 179(C), pages 1424-1446.
    4. Noorollahi, Younes & Golshanfard, Aminabbas & Hashemi-Dezaki, Hamed, 2022. "A scenario-based approach for optimal operation of energy hub under different schemes and structures," Energy, Elsevier, vol. 251(C).
    5. Jordehi, A. Rezaee & Javadi, Mohammad Sadegh & Shafie-khah, Miadreza & Catalão, João P.S., 2021. "Information gap decision theory (IGDT)-based robust scheduling of combined cooling, heat and power energy hubs," Energy, Elsevier, vol. 231(C).
    6. Bostan, Alireza & Nazar, Mehrdad Setayesh & Shafie-khah, Miadreza & Catalão, João P.S., 2020. "Optimal scheduling of distribution systems considering multiple downward energy hubs and demand response programs," Energy, Elsevier, vol. 190(C).
    7. Zhang, Tairan & Sobhani, Behrouz, 2023. "Optimal economic programming of an energy hub in the power system while taking into account the uncertainty of renewable resources, risk-taking and electric vehicles using a developed routing method," Energy, Elsevier, vol. 271(C).
    8. Nakamoto, Yuya & Eguchi, Shogo, 2024. "How do seasonal and technical factors affect generation efficiency of photovoltaic power plants?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    9. Yao, Xing & Yi, Bowen & Yu, Yang & Fan, Ying & Zhu, Lei, 2020. "Economic analysis of grid integration of variable solar and wind power with conventional power system," Applied Energy, Elsevier, vol. 264(C).
    10. Khanahmadi, Abbas & Ghaffarpour, Reza, 2022. "A cost-effective and emission-Aware hybrid system considering uncertainty: A case study in a remote area," Renewable Energy, Elsevier, vol. 201(P1), pages 977-992.
    11. Scott, Ian J. & Carvalho, Pedro M.S. & Botterud, Audun & Silva, Carlos A., 2021. "Long-term uncertainties in generation expansion planning: Implications for electricity market modelling and policy," Energy, Elsevier, vol. 227(C).
    12. Qin, Chun & Zhao, Jun & Chen, Long & Liu, Ying & Wang, Wei, 2022. "An adaptive piecewise linearized weighted directed graph for the modeling and operational optimization of integrated energy systems," Energy, Elsevier, vol. 244(PA).
    13. Manzoor Ellahi & Ghulam Abbas & Irfan Khan & Paul Mario Koola & Mashood Nasir & Ali Raza & Umar Farooq, 2019. "Recent Approaches of Forecasting and Optimal Economic Dispatch to Overcome Intermittency of Wind and Photovoltaic (PV) Systems: A Review," Energies, MDPI, vol. 12(22), pages 1-30, November.
    14. Dezhou Kong & Jianru Jing & Tingyue Gu & Xuanyue Wei & Xingning Sa & Yimin Yang & Zhiang Zhang, 2023. "Theoretical Analysis of Integrated Community Energy Systems (ICES) Considering Integrated Demand Response (IDR): A Review of the System Modelling and Optimization," Energies, MDPI, vol. 16(10), pages 1-22, May.
    15. Biao Li & Tao Wang & Chunxiao Li & Zhen Dong & Hua Yang & Yi Sun & Pengfei Wang, 2022. "A Strategy for Determining the Decommissioning Life of Energy Equipment Based on Economic Factors and Operational Stability," Sustainability, MDPI, vol. 14(24), pages 1-24, December.
    16. Lv, Chaoxian & Liang, Rui & Zhang, Ge & Zhang, Xiaotong & Jin, Wei, 2023. "Energy accommodation-oriented interaction of active distribution network and central energy station considering soft open points," Energy, Elsevier, vol. 268(C).
    17. Najafi, Arsalan & Pourakbari-Kasmaei, Mahdi & Jasinski, Michal & Lehtonen, Matti & Leonowicz, Zbigniew, 2021. "A hybrid decentralized stochastic-robust model for optimal coordination of electric vehicle aggregator and energy hub entities," Applied Energy, Elsevier, vol. 304(C).
    18. Azimian, Mahdi & Amir, Vahid & Mohseni, Soheil & Brent, Alan C. & Bazmohammadi, Najmeh & Guerrero, Josep M., 2022. "Optimal Investment Planning of Bankable Multi-Carrier Microgrid Networks," Applied Energy, Elsevier, vol. 328(C).
    19. Jie Zhu & Buxiang Zhou & Yiwei Qiu & Tianlei Zang & Yi Zhou & Shi Chen & Ningyi Dai & Huan Luo, 2023. "Survey on Modeling of Temporally and Spatially Interdependent Uncertainties in Renewable Power Systems," Energies, MDPI, vol. 16(16), pages 1-19, August.
    20. Zhou, Yuan & Ma, Yanpeng & Wang, Jiangjiang & Lu, Shuaikang, 2021. "Collaborative planning of spatial layouts of distributed energy stations and networks: A case study," Energy, Elsevier, vol. 234(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:229:y:2021:i:c:s0360544221009579. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.