IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i2p537-d723334.html
   My bibliography  Save this article

Home Energy Management Strategy-Based Meta-Heuristic Optimization for Electrical Energy Cost Minimization Considering TOU Tariffs

Author

Listed:
  • Rittichai Liemthong

    (Department of Electrical Engineering, Khon Kaen University, Khon Kaen 40002, Thailand)

  • Chitchai Srithapon

    (Department of Electrical Engineering, Khon Kaen University, Khon Kaen 40002, Thailand
    Department of Electrical Engineering, KTH Royal Institute of Technology, 11428 Stockholm, Sweden)

  • Prasanta K. Ghosh

    (Department of Electrical Engineering and Computer Science, Syracuse University, Syracuse, NY 13244, USA)

  • Rongrit Chatthaworn

    (Department of Electrical Engineering, Khon Kaen University, Khon Kaen 40002, Thailand
    Alternative Energy Research and Development, Khon Kaen University, Khon Kaen 40002, Thailand)

Abstract

It is well documented that both solar photovoltaic (PV) systems and electric vehicles (EVs) positively impact the global environment. However, the integration of high PV resources into distribution networks creates new challenges because of the uncertainty of PV power generation. Additionally, high power consumption during many EV charging operations at a certain time of the day can be stressful for the distribution network. Stresses on the distribution network influence higher electricity tariffs, which negatively impact consumers. Therefore, a home energy management system is one of the solutions to control electricity consumption to reduce electrical energy costs. In this paper, a meta-heuristic-based optimization of a home energy management strategy is presented with the goal of electrical energy cost minimization for the consumer under the time-of-use (TOU) tariffs. The proposed strategy manages the operations of the plug-in electric vehicle (PEV) and the energy storage system (ESS) charging and discharging in a home. The meta-heuristic optimization, namely a genetic algorithm (GA), was applied to the home energy management strategy for minimizing the daily electrical energy cost for the consumer through optimal scheduling of ESS and PEV operations. To confirm the effectiveness of the proposed methodology, the load profile of a household in Udonthani, Thailand, and the TOU tariffs of the provincial electricity authority (PEA) of Thailand were applied in the simulation. The simulation results show that the proposed strategy with GA optimization provides the minimum daily or net electrical energy cost for the consumer. The daily electrical energy cost for the consumer is equal to 0.3847 USD when the methodology without GA optimization is used, whereas the electrical energy cost is equal to 0.3577 USD when the proposed methodology with GA optimization is used. Therefore, the proposed optimal home energy management strategy with GA optimization can decrease the daily electrical energy cost for the consumer up to 7.0185% compared to the electrical energy cost obtained from the methodology without GA optimization.

Suggested Citation

  • Rittichai Liemthong & Chitchai Srithapon & Prasanta K. Ghosh & Rongrit Chatthaworn, 2022. "Home Energy Management Strategy-Based Meta-Heuristic Optimization for Electrical Energy Cost Minimization Considering TOU Tariffs," Energies, MDPI, vol. 15(2), pages 1-22, January.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:2:p:537-:d:723334
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/2/537/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/2/537/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chitchai Srithapon & Prasanta Ghosh & Apirat Siritaratiwat & Rongrit Chatthaworn, 2020. "Optimization of Electric Vehicle Charging Scheduling in Urban Village Networks Considering Energy Arbitrage and Distribution Cost," Energies, MDPI, vol. 13(2), pages 1-20, January.
    2. Khemakhem, Siwar & Rekik, Mouna & Krichen, Lotfi, 2019. "Double layer home energy supervision strategies based on demand response and plug-in electric vehicle control for flattening power load curves in a smart grid," Energy, Elsevier, vol. 167(C), pages 312-324.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jahangir Hossain & Aida. F. A. Kadir & Ainain. N. Hanafi & Hussain Shareef & Tamer Khatib & Kyairul. A. Baharin & Mohamad. F. Sulaima, 2023. "A Review on Optimal Energy Management in Commercial Buildings," Energies, MDPI, vol. 16(4), pages 1-40, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luo, Lizi & He, Pinquan & Gu, Wei & Sheng, Wanxing & Liu, Keyan & Bai, Muke, 2022. "Temporal-spatial scheduling of electric vehicles in AC/DC distribution networks," Energy, Elsevier, vol. 255(C).
    2. Lin, Jin & Dong, Jun & Liu, Dongran & Zhang, Yaoyu & Ma, Tongtao, 2022. "From peak shedding to low-carbon transitions: Customer psychological factors in demand response," Energy, Elsevier, vol. 238(PA).
    3. Zou, Wenke & Sun, Yongjun & Gao, Dian-ce & Zhang, Xu & Liu, Junyao, 2023. "A review on integration of surging plug-in electric vehicles charging in energy-flexible buildings: Impacts analysis, collaborative management technologies, and future perspective," Applied Energy, Elsevier, vol. 331(C).
    4. Xiaohong Jiang & Xiucheng Guo, 2020. "Evaluation of Performance and Technological Characteristics of Battery Electric Logistics Vehicles: China as a Case Study," Energies, MDPI, vol. 13(10), pages 1-23, May.
    5. Adil Amin & Wajahat Ullah Khan Tareen & Muhammad Usman & Haider Ali & Inam Bari & Ben Horan & Saad Mekhilef & Muhammad Asif & Saeed Ahmed & Anzar Mahmood, 2020. "A Review of Optimal Charging Strategy for Electric Vehicles under Dynamic Pricing Schemes in the Distribution Charging Network," Sustainability, MDPI, vol. 12(23), pages 1-28, December.
    6. Yu, Hang & Shang, Yitong & Niu, Songyan & Cheng, Chong & Shao, Ziyun & Jian, Linni, 2022. "Towards energy-efficient and cost-effective DC nanaogrid: A novel pseudo hierarchical architecture incorporating V2G technology for both autonomous coordination and regulated power dispatching," Applied Energy, Elsevier, vol. 313(C).
    7. Bartolucci, Lorenzo & Cordiner, Stefano & Mulone, Vincenzo & Santarelli, Marina, 2019. "Hybrid renewable energy systems: Influence of short term forecasting on model predictive control performance," Energy, Elsevier, vol. 172(C), pages 997-1004.
    8. Pang, Yuexia & He, Yongxiu & Jiao, Jie & Cai, Hua, 2020. "Power load demand response potential of secondary sectors in China: The case of western Inner Mongolia," Energy, Elsevier, vol. 192(C).
    9. Muhammad Saidu Aliero & Muhammad Asif & Imran Ghani & Muhammad Fermi Pasha & Seung Ryul Jeong, 2022. "Systematic Review Analysis on Smart Building: Challenges and Opportunities," Sustainability, MDPI, vol. 14(5), pages 1-28, March.
    10. Hu, Maomao & Xiao, Fu & Wang, Shengwei, 2021. "Neighborhood-level coordination and negotiation techniques for managing demand-side flexibility in residential microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    11. Ahmad Almaghrebi & Fares Aljuheshi & Mostafa Rafaie & Kevin James & Mahmoud Alahmad, 2020. "Data-Driven Charging Demand Prediction at Public Charging Stations Using Supervised Machine Learning Regression Methods," Energies, MDPI, vol. 13(16), pages 1-21, August.
    12. Muhammad Usman & Wajahat Ullah Khan Tareen & Adil Amin & Haider Ali & Inam Bari & Muhammad Sajid & Mehdi Seyedmahmoudian & Alex Stojcevski & Anzar Mahmood & Saad Mekhilef, 2021. "A Coordinated Charging Scheduling of Electric Vehicles Considering Optimal Charging Time for Network Power Loss Minimization," Energies, MDPI, vol. 14(17), pages 1-16, August.
    13. Modawy Adam Ali Abdalla & Wang Min & Gehad Abdullah Amran & Amerah Alabrah & Omer Abbaker Ahmed Mohammed & Hussain AlSalman & Bassiouny Saleh, 2023. "Optimizing Energy Usage and Smoothing Load Profile via a Home Energy Management Strategy with Vehicle-to-Home and Energy Storage System," Sustainability, MDPI, vol. 15(20), pages 1-28, October.
    14. Wu, Wei & Lin, Boqiang, 2021. "Benefits of electric vehicles integrating into power grid," Energy, Elsevier, vol. 224(C).
    15. Calise, Francesco & Cappiello, Francesco Liberato & Cartenì, Armando & Dentice d’Accadia, Massimo & Vicidomini, Maria, 2019. "A novel paradigm for a sustainable mobility based on electric vehicles, photovoltaic panels and electric energy storage systems: Case studies for Naples and Salerno (Italy)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 97-114.
    16. Victor J. Gutierrez-Martinez & Carlos A. Moreno-Bautista & Jose M. Lozano-Garcia & Alejandro Pizano-Martinez & Enrique A. Zamora-Cardenas & Miguel A. Gomez-Martinez, 2019. "A Heuristic Home Electric Energy Management System Considering Renewable Energy Availability," Energies, MDPI, vol. 12(4), pages 1-20, February.
    17. Pattasad Seangwong & Supanat Chamchuen & Nuwantha Fernando & Apirat Siritaratiwat & Pirat Khunkitti, 2022. "A Novel Six-Phase V-Shaped Flux-Switching Permanent Magnet Generator for Wind Power Generation," Energies, MDPI, vol. 15(24), pages 1-11, December.
    18. Abid, Md. Shadman & Apon, Hasan Jamil & Hossain, Salman & Ahmed, Ashik & Ahshan, Razzaqul & Lipu, M.S. Hossain, 2024. "A novel multi-objective optimization based multi-agent deep reinforcement learning approach for microgrid resources planning," Applied Energy, Elsevier, vol. 353(PA).
    19. Uddin, Moslem & Romlie, M.F. & Abdullah, M.F. & Tan, ChiaKwang & Shafiullah, GM & Bakar, A.H.A., 2020. "A novel peak shaving algorithm for islanded microgrid using battery energy storage system," Energy, Elsevier, vol. 196(C).
    20. Niphon Kaewdornhan & Chitchai Srithapon & Rittichai Liemthong & Rongrit Chatthaworn, 2023. "Real-Time Multi-Home Energy Management with EV Charging Scheduling Using Multi-Agent Deep Reinforcement Learning Optimization," Energies, MDPI, vol. 16(5), pages 1-25, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:2:p:537-:d:723334. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.