IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v254y2022ipcs0360544222013378.html
   My bibliography  Save this article

Molecular dynamics simulation of oil detachment from hydrophobic quartz surfaces during steam-surfactant Co-injection

Author

Listed:
  • Ahmadi, Mohammadali
  • Chen, Zhangxin

Abstract

In-situ recovery of bitumen involves high-temperature conditions yielded by a steam injection process, making it costly to produce, along with an extensive environmental footprint. From solvents to surfactants, additives come into play to tackle these issues efficiently. These additives can reduce a required amount of steam and increase bitumen recovery. Formulating surfactants for bitumen recovery under thermal process conditions requires solid knowledge about mechanisms and parameters incorporated into bitumen recovery. Molecular Dynamics (MD) simulation is carried out in this work to address unclear mechanisms that contribute to the bitumen recovery under a steam-anionic surfactant co-injection process. According to equilibrium MD simulation outputs, having sulfur on resin molecules can negatively affect an oil detachment process from a quartz surface due to changes in intermolecular interactions between different pairs of molecules inside a system, such as asphaltene-resin, asphaltene-asphaltene, and asphaltene-surfactant pairs. Under a flow condition, the composition of a resin fraction can change the threshold of a pumping force to detach oil from a quartz surface. During non-equilibrium MD simulation, increasing the pumping force strength from 10−5 to 10−4 Kcal/(mol.Ȧ) can improve the oil detachment process from the reservoir rock when the resin fraction contains sulfur. However, in the case of resin without sulfur, increasing the pumping force had a minor reduction in the oil detachment process. The outcomes of this paper will lay a solid foundation regarding mechanisms contributing to in-situ bitumen recovery, especially with chemical additives. Furthermore, they will provide a useful guidance for formulating chemicals applicable in the steam-chemical co-injection.

Suggested Citation

  • Ahmadi, Mohammadali & Chen, Zhangxin, 2022. "Molecular dynamics simulation of oil detachment from hydrophobic quartz surfaces during steam-surfactant Co-injection," Energy, Elsevier, vol. 254(PC).
  • Handle: RePEc:eee:energy:v:254:y:2022:i:pc:s0360544222013378
    DOI: 10.1016/j.energy.2022.124434
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222013378
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.124434?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Safaei, M. & Oni, A.O. & Gemechu, E.D. & Kumar, A., 2019. "Evaluation of energy and GHG emissions’ footprints of bitumen extraction using Enhanced Solvent Extraction Incorporating Electromagnetic Heating technology," Energy, Elsevier, vol. 186(C).
    2. Hu, Haixiang & Li, Xiaochun & Fang, Zhiming & Wei, Ning & Li, Qianshu, 2010. "Small-molecule gas sorption and diffusion in coal: Molecular simulation," Energy, Elsevier, vol. 35(7), pages 2939-2944.
    3. Chen, Lei & Wang, Shanyou & Tao, Wenquan, 2019. "A study on thermodynamic and transport properties of carbon dioxide using molecular dynamics simulation," Energy, Elsevier, vol. 179(C), pages 1094-1102.
    4. Raaen, S. & Ramstad, A., 2005. "Monte-Carlo simulations of thermal desorption of adsorbed molecules from metal surfaces," Energy, Elsevier, vol. 30(6), pages 821-830.
    5. Rao, Zhonghao & Wang, Shuangfeng & Peng, Feifei & Zhang, Wei & Zhang, Yanlai, 2012. "Dissipative particle dynamics investigation of microencapsulated thermal energy storage phase change materials," Energy, Elsevier, vol. 44(1), pages 805-812.
    6. Sorrell, Steve & Speirs, Jamie & Bentley, Roger & Brandt, Adam & Miller, Richard, 2010. "Global oil depletion: A review of the evidence," Energy Policy, Elsevier, vol. 38(9), pages 5290-5295, September.
    7. Kjelstrup, S. & Bedeaux, D. & Inzoli, I. & Simon, J.-M., 2008. "Criteria for validity of thermodynamic equations from non-equilibrium molecular dynamics simulations," Energy, Elsevier, vol. 33(8), pages 1185-1196.
    8. Dong, Xiaohu & Liu, Huiqing & Chen, Zhangxin & Wu, Keliu & Lu, Ning & Zhang, Qichen, 2019. "Enhanced oil recovery techniques for heavy oil and oilsands reservoirs after steam injection," Applied Energy, Elsevier, vol. 239(C), pages 1190-1211.
    9. Zhong, Jie & Wang, Pan & Zhang, Yang & Yan, Youguo & Hu, Songqing & Zhang, Jun, 2013. "Adsorption mechanism of oil components on water-wet mineral surface: A molecular dynamics simulation study," Energy, Elsevier, vol. 59(C), pages 295-300.
    10. Radpour, Saeidreza & Gemechu, Eskinder & Ahiduzzaman, Md & Kumar, Amit, 2021. "Development of a framework for the assessment of the market penetration of novel in situ bitumen extraction technologies," Energy, Elsevier, vol. 220(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dongsheng Chen & Wei Zheng & Taichao Wang & Fan Liu & Tong Cheng & Hengyuan Chen & Tingting Miao, 2022. "Influence of Temperature on the Adsorption and Diffusion of Heavy Oil in Quartz Nanopore: A Molecular Dynamics Study," Energies, MDPI, vol. 15(16), pages 1-17, August.
    2. Yan, Zechen & Li, Xiaofang & Zhu, Xu & Wang, Ping & Yu, Shifan & Li, Haonan & Wei, Kangxing & Li, Yan & Xue, Qingzhong, 2023. "MD-CFD simulation on the miscible displacement process of hydrocarbon gas flooding under deep reservoir conditions," Energy, Elsevier, vol. 263(PA).
    3. Lu, Ning & Dong, Xiaohu & Liu, Huiqing & Chen, Zhangxin & Xu, Wenjing & Zeng, Deshang, 2024. "Molecular insights into the synergistic mechanisms of hybrid CO2-surfactant thermal systems at heavy oil-water interfaces," Energy, Elsevier, vol. 286(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhong, Jie & Wang, Pan & Zhang, Yang & Yan, Youguo & Hu, Songqing & Zhang, Jun, 2013. "Adsorption mechanism of oil components on water-wet mineral surface: A molecular dynamics simulation study," Energy, Elsevier, vol. 59(C), pages 295-300.
    2. Qi, Yingxia & Meng, Xiangqi & Mu, Defu & Sun, Yangliu & Zhang, Hua, 2016. "Study on mechanism and factors affecting the gas leakage through clearance seal at nano-level by molecular dynamics method," Energy, Elsevier, vol. 102(C), pages 252-259.
    3. Yang, Min & Liu, Yishan & Lu, Ning & Chai, Maojie & Wang, Sen & Feng, Qihong & Chen, Zhangxin, 2023. "Integration of ramped temperature oxidation and combustion tube tests for kinetic modeling of heavy oil in-Situ combustion," Energy, Elsevier, vol. 274(C).
    4. Xu, Junming & Jiang, Jianchun & Zhao, Jiaping, 2016. "Thermochemical conversion of triglycerides for production of drop-in liquid fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 331-340.
    5. Zhouhua Wang & Yun Li & Huang Liu & Fanhua Zeng & Ping Guo & Wei Jiang, 2017. "Study on the Adsorption, Diffusion and Permeation Selectivity of Shale Gas in Organics," Energies, MDPI, vol. 10(1), pages 1-15, January.
    6. Wang, Sijia & Jiang, Lanlan & Cheng, Zucheng & Liu, Yu & Zhao, Jiafei & Song, Yongchen, 2021. "Experimental study on the CO2-decane displacement front behavior in high permeability sand evaluated by magnetic resonance imaging," Energy, Elsevier, vol. 217(C).
    7. Chen, Junqing & Jiang, Fujie & Cong, Qi & Pang, Xiongqi & Ma, Kuiyou & Shi, Kanyuan & Pang, Bo & Chen, Dongxia & Pang, Hong & Yang, Xiaobin & Wang, Yuying & Li, Bingyao, 2023. "Adsorption characteristics of shale gas in organic–inorganic slit pores," Energy, Elsevier, vol. 278(C).
    8. Giarola, Sara & Zamboni, Andrea & Bezzo, Fabrizio, 2012. "Environmentally conscious capacity planning and technology selection for bioethanol supply chains," Renewable Energy, Elsevier, vol. 43(C), pages 61-72.
    9. Li, Jing & Zhang, Lisong & Yang, Feiyue & Sun, Luning, 2020. "Positive measure and potential implication for heavy oil recovery of dip reservoir using SAGD based on numerical analysis," Energy, Elsevier, vol. 193(C).
    10. Zhou, Yuhao & Wang, Yanwei, 2022. "An integrated framework based on deep learning algorithm for optimizing thermochemical production in heavy oil reservoirs," Energy, Elsevier, vol. 253(C).
    11. José Luis Míguez & Jacobo Porteiro & Raquel Pérez-Orozco & Miguel Ángel Gómez, 2018. "Technology Evolution in Membrane-Based CCS," Energies, MDPI, vol. 11(11), pages 1-18, November.
    12. Anufriev, I.S. & Kopyev, E.P. & Alekseenko, S.V. & Sharypov, O.V. & Vigriyanov, M.S., 2022. "New ecology safe waste-to-energy technology of liquid fuel combustion with superheated steam," Energy, Elsevier, vol. 250(C).
    13. van den Bergh, Jeroen C.J.M., 2012. "Effective climate-energy solutions, escape routes and peak oil," Energy Policy, Elsevier, vol. 46(C), pages 530-536.
    14. Bringuier, E., 2012. "Transport of volume in a binary liquid," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(21), pages 5064-5075.
    15. Zhang, Lisong & Li, Jing & Sun, Luning & Yang, Feiyue, 2021. "An influence mechanism of shale barrier on heavy oil recovery using SAGD based on theoretical and numerical analysis," Energy, Elsevier, vol. 216(C).
    16. Yang, Xue & Chen, Zeqin & Liu, Xiaoqiang & Xue, Zhiyu & Yue, Fen & Wen, Junjie & Li, Meijun & Xue, Ying, 2022. "Correction of gas adsorption capacity in quartz nanoslit and its application in recovering shale gas resources by CO2 injection: A molecular simulation," Energy, Elsevier, vol. 240(C).
    17. Yiwei Wang & Yuan Wang & Sunhua Deng & Qiang Li & Jingjing Gu & Haoche Shui & Wei Guo, 2022. "Numerical Simulation Analysis of Heating Effect of Downhole Methane Catalytic Combustion Heater under High Pressure," Energies, MDPI, vol. 15(3), pages 1-23, February.
    18. Kuchler, Magdalena & Höök, Mikael, 2020. "Fractured visions: Anticipating (un)conventional natural gas in Poland," Resources Policy, Elsevier, vol. 68(C).
    19. Guo, Dan & Cao, Xuewen & Ding, Gaoya & Zhang, Pan & Liu, Yang & Bian, Jiang, 2022. "Crystallization and nucleation mechanism of heavy hydrocarbons in natural gas," Energy, Elsevier, vol. 239(PB).
    20. Heun, Matthew Kuperus & de Wit, Martin, 2012. "Energy return on (energy) invested (EROI), oil prices, and energy transitions," Energy Policy, Elsevier, vol. 40(C), pages 147-158.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:254:y:2022:i:pc:s0360544222013378. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.