IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v179y2019icp1094-1102.html
   My bibliography  Save this article

A study on thermodynamic and transport properties of carbon dioxide using molecular dynamics simulation

Author

Listed:
  • Chen, Lei
  • Wang, Shanyou
  • Tao, Wenquan

Abstract

Molecular dynamics simulation was applied to test and evaluate the ability of several models of carbon dioxide on predicting thermodynamics and transport properties. Firstly, we compared the liquid-vapor coexist curves of seven kinds of carbon dioxide models by molecular dynamics simulations. It was found that the Cygan_flex model and EPM2 model were more accurate than the others. Then we investigated the structural properties of carbon dioxide using NPT ensemble molecular dynamics simulation. The fluid became less dense with the increasing temperature. Thirdly, the self-diffusion coefficients were studied at temperature and pressure up to 600 K and 80 MPa, respectively. The results showed that the self-diffusion coefficient decreased with the increasing pressure and increased with increasing temperature. Finally, we calculated the thermal conductivity of carbon dioxide at 250 K using EPM2_flex model, Cygan_flex model and TraPPE_flex model. So, we should pay attention to the selection of appropriate carbon dioxide models to obtain different carbon dioxide properties.

Suggested Citation

  • Chen, Lei & Wang, Shanyou & Tao, Wenquan, 2019. "A study on thermodynamic and transport properties of carbon dioxide using molecular dynamics simulation," Energy, Elsevier, vol. 179(C), pages 1094-1102.
  • Handle: RePEc:eee:energy:v:179:y:2019:i:c:p:1094-1102
    DOI: 10.1016/j.energy.2019.05.073
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421930948X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.05.073?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Yingying & Zhao, Zejiao & Liu, Yanfeng & Wang, Dengjia & Ma, Chao & Liu, Jiaping, 2019. "Comprehensive correction of thermal conductivity of moist porous building materials with static moisture distribution and moisture transfer," Energy, Elsevier, vol. 176(C), pages 103-118.
    2. Chen, Lei & Huang, Ding-Bin & Wang, Shan-You & Nie, Yi-Nan & He, Ya-Ling & Tao, Wen-Quan, 2019. "A study on dynamic desorption process of methane in slits," Energy, Elsevier, vol. 175(C), pages 1174-1180.
    3. Onyekonwu, M.O., 1988. "The effects of relative permeability characteristics and thermal conductivity on in situ combustion performance," Energy, Elsevier, vol. 13(8), pages 619-624.
    4. Tang, G.H. & Bi, C. & Zhao, Y. & Tao, W.Q., 2015. "Thermal transport in nano-porous insulation of aerogel: Factors, models and outlook," Energy, Elsevier, vol. 90(P1), pages 701-721.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guo, Dan & Cao, Xuewen & Ding, Gaoya & Zhang, Pan & Liu, Yang & Bian, Jiang, 2022. "Crystallization and nucleation mechanism of heavy hydrocarbons in natural gas," Energy, Elsevier, vol. 239(PB).
    2. Noushabadi, Abolfazl Sajadi & Lay, Ebrahim Nemati & Dashti, Amir & Mohammadi, Amir H. & Chofreh, Abdoulmohammad Gholamzadeh & Goni, Feybi Ariani & Klemeš, Jiří Jaromír, 2023. "Insights into modelling and evaluation of thermodynamic and transport properties of refrigerants using machine-learning methods," Energy, Elsevier, vol. 262(PA).
    3. Ahmadi, Mohammadali & Chen, Zhangxin, 2022. "Molecular dynamics simulation of oil detachment from hydrophobic quartz surfaces during steam-surfactant Co-injection," Energy, Elsevier, vol. 254(PC).
    4. Ren, Ze-Yu & Wang, Bing-Bing & Qiu, Guo-Dong & Bian, Jiang & Li, Qiu-Ying & Cai, Wei-Hua, 2024. "Molecular dynamics study on desublimation and crystal nucleation of carbon dioxide on a low temperature surface," Energy, Elsevier, vol. 292(C).
    5. Bian, Jiang & Ding, Gaoya & Guo, Dan & Cao, Hengguang & Liu, Yang & Cao, Xuewen, 2023. "Surface crystallization mechanism of n-hexane droplets," Energy, Elsevier, vol. 263(PD).
    6. Bian, Jiang & Guo, Dan & Li, Yuxuan & Cai, Weihua & Hua, Yihuai & Cao, Xuewen, 2022. "Homogeneous nucleation and condensation mechanism of methane gas: A molecular simulation perspective," Energy, Elsevier, vol. 249(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Haiyan & Zhang, Haochun & Buahom, Piyapong & Liu, Jing & Xia, Xinlin & Park, Chul B., 2021. "Prediction of thermal conductivity of micro/nano porous dielectric materials: Theoretical model and impact factors," Energy, Elsevier, vol. 233(C).
    2. Wang, Xiaoyu & Jin, Xing & Yin, Yonggao & Wang, Xinyu & Shi, Xing & Zhou, Xin, 2020. "Study on non-isothermal moisture transfer characteristics of hygroscopic building materials: From parameter characterization to model analysis," Energy, Elsevier, vol. 212(C).
    3. Wu, Jian & Gan, Yixiang & Shi, Zhang & Huang, Pengyu & Shen, Luming, 2023. "Pore-scale lattice Boltzmann simulation of CO2-CH4 displacement in shale matrix," Energy, Elsevier, vol. 278(PB).
    4. Tian, He & Li, Zhonghui & Liu, Zhi & Yin, Shan & Niu, Yue & Zhang, Quancong & Chen, Dong, 2024. "Visual characterization of coal gas desorption using infrared radiation," Energy, Elsevier, vol. 289(C).
    5. Wang, Tianmi & Si, Qiaoling & Hu, Yang & Tang, Guihua & Chua, Kian Jon, 2023. "Silica aerogel composited with both plasmonic nanoparticles and opacifiers for high-efficiency photo-thermal harvest," Energy, Elsevier, vol. 265(C).
    6. Wang, Xiaoyu & Jin, Xing & Yin, Yonggao & Shi, Xing & Zhou, Xin, 2021. "A transient heat and moisture transfer model for building materials based on phase change criterion under isothermal and non-isothermal conditions," Energy, Elsevier, vol. 224(C).
    7. Zheng, Xinyao & Zhou, Yuekuan, 2023. "A three-dimensional unsteady numerical model on a novel aerogel-based PV/T-PCM system with dynamic heat-transfer mechanism and solar energy harvesting analysis," Applied Energy, Elsevier, vol. 338(C).
    8. Hassan, I.A. & Ramadan, Haitham S. & Saleh, Mohamed A. & Hissel, Daniel, 2021. "Hydrogen storage technologies for stationary and mobile applications: Review, analysis and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:179:y:2019:i:c:p:1094-1102. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.