IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i16p5870-d887174.html
   My bibliography  Save this article

Influence of Temperature on the Adsorption and Diffusion of Heavy Oil in Quartz Nanopore: A Molecular Dynamics Study

Author

Listed:
  • Dongsheng Chen

    (State Key Laboratory of Offshore Oil Exploitation, Beijing 100028, China
    Beijing Key Laboratory of Process Fluid Filtration and Separation, College of Mechanical and Transportation Engineering, China University of Petroleum-Beijing, Beijing 102249, China)

  • Wei Zheng

    (State Key Laboratory of Offshore Oil Exploitation, Beijing 100028, China
    CNOOC Research Institute Ltd., Beijing 100028, China)

  • Taichao Wang

    (State Key Laboratory of Offshore Oil Exploitation, Beijing 100028, China
    CNOOC Research Institute Ltd., Beijing 100028, China)

  • Fan Liu

    (State Key Laboratory of Offshore Oil Exploitation, Beijing 100028, China
    CNOOC Research Institute Ltd., Beijing 100028, China)

  • Tong Cheng

    (Beijing Key Laboratory of Process Fluid Filtration and Separation, College of Mechanical and Transportation Engineering, China University of Petroleum-Beijing, Beijing 102249, China)

  • Hengyuan Chen

    (Beijing Key Laboratory of Process Fluid Filtration and Separation, College of Mechanical and Transportation Engineering, China University of Petroleum-Beijing, Beijing 102249, China)

  • Tingting Miao

    (Beijing Key Laboratory of Process Fluid Filtration and Separation, College of Mechanical and Transportation Engineering, China University of Petroleum-Beijing, Beijing 102249, China)

Abstract

The desorption of heavy oil is one of the important indicators affecting the development efficiency of the remaining oil in nanopores. However, the study of the adsorption and diffusion mechanisms of heavy oil molecules in nanopores remains scarce. In this work, the influences of temperature on the adsorption and diffusion properties of the heavy oil four-fractions in quartz nanopore have been investigated via molecular dynamics simulations. Our results show that the heavy oil molecules will form a denser multilayer adsorption oil layer on the nanopore surface, and high temperature can alter the adsorption behaviors of the heavy oil four-fractions. As the temperature increases, the saturate molecules are desorbed from the nanopore surfaces, but the aromatic, resin, and asphaltene molecules maintain a tendency to aggregate towards the nanopore surface. In particular, the agglomeration behaviors of most saturate, aromatic and asphaltene molecules in nanopore can be suppressed by the confined space compared with the heavy oil molecules in oil droplet. In addition, the influence of temperature on the movement of heavy oil molecules in nanopore decreases compared with the oil molecules in a heavy oil droplet due to the confined space and adsorption effect. Interestingly, there is a competition phenomenon between the adsorption and diffusion of aromatic, resin, and asphaltene molecules in the nanopore, resulting in different adsorption behaviors with the increase in temperature. The results obtained in this paper will provide molecular-level theoretical guidance for understanding the adsorption and desorption mechanisms of heavy oil in nanopores.

Suggested Citation

  • Dongsheng Chen & Wei Zheng & Taichao Wang & Fan Liu & Tong Cheng & Hengyuan Chen & Tingting Miao, 2022. "Influence of Temperature on the Adsorption and Diffusion of Heavy Oil in Quartz Nanopore: A Molecular Dynamics Study," Energies, MDPI, vol. 15(16), pages 1-17, August.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:16:p:5870-:d:887174
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/16/5870/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/16/5870/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Songyan & Han, Rui & Wang, Peng & Cao, Zijian & Li, Zhaomin & Ren, Guangwei, 2022. "Experimental investigation of innovative superheated vapor extraction technique in heavy oil reservoirs: A two-dimensional visual analysis," Energy, Elsevier, vol. 238(PC).
    2. Zhong, Jie & Wang, Pan & Zhang, Yang & Yan, Youguo & Hu, Songqing & Zhang, Jun, 2013. "Adsorption mechanism of oil components on water-wet mineral surface: A molecular dynamics simulation study," Energy, Elsevier, vol. 59(C), pages 295-300.
    3. Ahmadi, Mohammadali & Chen, Zhangxin, 2022. "Molecular dynamics simulation of oil detachment from hydrophobic quartz surfaces during steam-surfactant Co-injection," Energy, Elsevier, vol. 254(PC).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huiying Zhong & Weidong Zhang & Jing Fu & Jun Lu & Hongjun Yin, 2017. "The Performance of Polymer Flooding in Heterogeneous Type II Reservoirs—An Experimental and Field Investigation," Energies, MDPI, vol. 10(4), pages 1-19, April.
    2. Lyu, Chaohui & Zhong, Liguo & Wang, Qing & Zhang, Wei & Han, Xiaodong & Chen, Mingqiang & Zhu, Yu & Yang, Jiawang, 2023. "Core scale analysis of low viscosity oil injection in enhancing oil recovery of heavy oil reservoirs," Energy, Elsevier, vol. 275(C).
    3. Zhang, Yingnan & Li, Shujun & Dou, Xiangji & Wang, Sen & He, Yanfeng & Feng, Qihong, 2023. "Molecular insights into the natural gas regulating tight oil movability," Energy, Elsevier, vol. 270(C).
    4. Qi, Yingxia & Meng, Xiangqi & Mu, Defu & Sun, Yangliu & Zhang, Hua, 2016. "Study on mechanism and factors affecting the gas leakage through clearance seal at nano-level by molecular dynamics method," Energy, Elsevier, vol. 102(C), pages 252-259.
    5. Park, Hyemin & Han, Jinju & Sung, Wonmo, 2015. "Effect of polymer concentration on the polymer adsorption-induced permeability reduction in low permeability reservoirs," Energy, Elsevier, vol. 84(C), pages 666-671.
    6. Yang, Renfeng & Jiang, Ruizhong & Guo, Sheng & Chen, Han & Tang, Shasha & Duan, Rui, 2021. "Analytical study on the Critical Water Cut for Water Plugging: Water cut increasing control and production enhancement," Energy, Elsevier, vol. 214(C).
    7. Chen, Zherui & Zhang, Yue & Sun, Jingyue & Tian, Yuxuan & Liu, Weiguo & Chen, Cong & Dai, Sining & Song, Yongchen, 2024. "The influence of cyclodextrin on hydrophobicity of pipeline and asphalt distribution: A green and efficient corrosion inhibitor," Energy, Elsevier, vol. 297(C).
    8. Lu, Ning & Dong, Xiaohu & Liu, Huiqing & Chen, Zhangxin & Xu, Wenjing & Zeng, Deshang, 2024. "Molecular insights into the synergistic mechanisms of hybrid CO2-surfactant thermal systems at heavy oil-water interfaces," Energy, Elsevier, vol. 286(C).
    9. Yan, Zechen & Li, Xiaofang & Zhu, Xu & Wang, Ping & Yu, Shifan & Li, Haonan & Wei, Kangxing & Li, Yan & Xue, Qingzhong, 2023. "MD-CFD simulation on the miscible displacement process of hydrocarbon gas flooding under deep reservoir conditions," Energy, Elsevier, vol. 263(PA).
    10. Ahmadi, Mohammadali & Chen, Zhangxin, 2022. "Molecular dynamics simulation of oil detachment from hydrophobic quartz surfaces during steam-surfactant Co-injection," Energy, Elsevier, vol. 254(PC).
    11. Perdomo, Felipe A. & Millán, Beatriz M. & Aragón, José L., 2014. "Predicting the physical–chemical properties of biodiesel fuels assessing the molecular structure with the SAFT−γ group contribution approach," Energy, Elsevier, vol. 72(C), pages 274-290.
    12. Sun, Hai & Li, Tianhao & Li, Zheng & Fan, Dongyan & Zhang, Lei & Yang, Yongfei & Zhang, Kai & Zhong, Junjie & Yao, Jun, 2023. "Shale oil redistribution-induced flow regime transition in nanopores," Energy, Elsevier, vol. 282(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:16:p:5870-:d:887174. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.