IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v102y2016icp252-259.html
   My bibliography  Save this article

Study on mechanism and factors affecting the gas leakage through clearance seal at nano-level by molecular dynamics method

Author

Listed:
  • Qi, Yingxia
  • Meng, Xiangqi
  • Mu, Defu
  • Sun, Yangliu
  • Zhang, Hua

Abstract

The past researches on the gas leakage through the clearance seal were studied mainly by the analytical model or numerical simulations using CFD method based on the classical fluid mechanics theory in the conditions of steady laminar flow, incompressible, constant temperature, constant viscosity, and no relative sliding between the inner and outer wall. However, it is widely known that the CFD theory may not be applicable to the micro-size flow. In this paper, the molecular mechanism of the gas leak through the clearance seal was investigated by MD (molecular dynamics) simulations. The Johnson potential model was used for Fe–Fe atomic interactions and the UFF (Universal Force Field) potential model was used for the atomic interactions between Fe–He and He–He. The gap thickness was varied from 2000 Å to 5000 Å. The pressure difference over the ends of the gap was from 0.2 MPa to 1.0 MPa. The simulation results show that the leakage rate was proportional to the pressure difference and the gap thickness. During the process of the leakage, the sticky layers were formed on the gap walls. The number density of the atoms in the sticky layer was much larger than that of the central region. And the density of the gas flow of the leakage was much smaller than that of the gas reservoir. The leakage mechanism was mainly due to the diffusion motions of the atoms through the sticky layers although the moving speed of the sticky layers was very slow. The leakage flow rate from the MD simulation was quite consistent with that from the analytical calculation.

Suggested Citation

  • Qi, Yingxia & Meng, Xiangqi & Mu, Defu & Sun, Yangliu & Zhang, Hua, 2016. "Study on mechanism and factors affecting the gas leakage through clearance seal at nano-level by molecular dynamics method," Energy, Elsevier, vol. 102(C), pages 252-259.
  • Handle: RePEc:eee:energy:v:102:y:2016:i:c:p:252-259
    DOI: 10.1016/j.energy.2016.02.087
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216301499
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.02.087?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mabrouk, M.T. & Kheiri, A. & Feidt, M., 2015. "Effect of leakage losses on the performance of a β type Stirling engine," Energy, Elsevier, vol. 88(C), pages 111-117.
    2. Hu, Haixiang & Li, Xiaochun & Fang, Zhiming & Wei, Ning & Li, Qianshu, 2010. "Small-molecule gas sorption and diffusion in coal: Molecular simulation," Energy, Elsevier, vol. 35(7), pages 2939-2944.
    3. Maharaj, Avinash & Schmitz, Walter & Naidoo, Reshendren, 2015. "A numerical study of air preheater leakage," Energy, Elsevier, vol. 92(P1), pages 87-99.
    4. Mabrouk, M.T. & Kheiri, A. & Feidt, M., 2014. "Displacer gap losses in beta and gamma Stirling engines," Energy, Elsevier, vol. 72(C), pages 135-144.
    5. Gao, Jie & Zheng, Qun & Xu, Tianbang & Dong, Ping, 2015. "Inlet conditions effect on tip leakage vortex breakdown in unshrouded axial turbines," Energy, Elsevier, vol. 91(C), pages 255-263.
    6. Kjelstrup, S. & Bedeaux, D. & Inzoli, I. & Simon, J.-M., 2008. "Criteria for validity of thermodynamic equations from non-equilibrium molecular dynamics simulations," Energy, Elsevier, vol. 33(8), pages 1185-1196.
    7. Asinari, Pietro & Chiavazzo, Eliodoro, 2014. "The notion of energy through multiple scales: From a molecular level to fluid flows and beyond," Energy, Elsevier, vol. 68(C), pages 870-876.
    8. Zhong, Jie & Wang, Pan & Zhang, Yang & Yan, Youguo & Hu, Songqing & Zhang, Jun, 2013. "Adsorption mechanism of oil components on water-wet mineral surface: A molecular dynamics simulation study," Energy, Elsevier, vol. 59(C), pages 295-300.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmadi, Mohammadali & Chen, Zhangxin, 2022. "Molecular dynamics simulation of oil detachment from hydrophobic quartz surfaces during steam-surfactant Co-injection," Energy, Elsevier, vol. 254(PC).
    2. Zhong, Jie & Wang, Pan & Zhang, Yang & Yan, Youguo & Hu, Songqing & Zhang, Jun, 2013. "Adsorption mechanism of oil components on water-wet mineral surface: A molecular dynamics simulation study," Energy, Elsevier, vol. 59(C), pages 295-300.
    3. Perdomo, Felipe A. & Millán, Beatriz M. & Aragón, José L., 2014. "Predicting the physical–chemical properties of biodiesel fuels assessing the molecular structure with the SAFT−γ group contribution approach," Energy, Elsevier, vol. 72(C), pages 274-290.
    4. Rocha, P. A. Costa & Rocha, H. H. Barbosa & Carneiro, F. O. Moura & da Silva, M. E. Vieira & de Andrade, C. Freitas, 2016. "A case study on the calibration of the k–ω SST (shear stress transport) turbulence model for small scale wind turbines designed with cambered and symmetrical airfoils," Energy, Elsevier, vol. 97(C), pages 144-150.
    5. Zhouhua Wang & Yun Li & Huang Liu & Fanhua Zeng & Ping Guo & Wei Jiang, 2017. "Study on the Adsorption, Diffusion and Permeation Selectivity of Shale Gas in Organics," Energies, MDPI, vol. 10(1), pages 1-15, January.
    6. Chen, Junqing & Jiang, Fujie & Cong, Qi & Pang, Xiongqi & Ma, Kuiyou & Shi, Kanyuan & Pang, Bo & Chen, Dongxia & Pang, Hong & Yang, Xiaobin & Wang, Yuying & Li, Bingyao, 2023. "Adsorption characteristics of shale gas in organic–inorganic slit pores," Energy, Elsevier, vol. 278(C).
    7. Qiu, Hao & Wang, Kai & Yu, Peifeng & Ni, Mingjiang & Xiao, Gang, 2021. "A third-order numerical model and transient characterization of a β-type Stirling engine," Energy, Elsevier, vol. 222(C).
    8. José Luis Míguez & Jacobo Porteiro & Raquel Pérez-Orozco & Miguel Ángel Gómez, 2018. "Technology Evolution in Membrane-Based CCS," Energies, MDPI, vol. 11(11), pages 1-18, November.
    9. Bringuier, E., 2012. "Transport of volume in a binary liquid," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(21), pages 5064-5075.
    10. Yang, Xue & Chen, Zeqin & Liu, Xiaoqiang & Xue, Zhiyu & Yue, Fen & Wen, Junjie & Li, Meijun & Xue, Ying, 2022. "Correction of gas adsorption capacity in quartz nanoslit and its application in recovering shale gas resources by CO2 injection: A molecular simulation," Energy, Elsevier, vol. 240(C).
    11. Liu, Huang & Yao, Desong & Yang, Bowen & Li, Huashi & Guo, Ping & Du, Jianfen & Wang, Jian & Yang, Shuokong & Wen, Lianhui, 2022. "Experimental investigation on the mechanism of low permeability natural gas extraction accompanied by carbon dioxide sequestration," Energy, Elsevier, vol. 253(C).
    12. Zhou, Kai & Zheng, Xinqian, 2022. "Novel wave-shaped tip-shroud contours towards reducing turbine leakage loss," Energy, Elsevier, vol. 254(PA).
    13. Huang, Haiping & Wang, Eric, 2020. "A laboratory investigation of the impact of solvent treatment on the permeability of bituminous coal from Western Canada with a focus on microbial in-situ processing of coals," Energy, Elsevier, vol. 210(C).
    14. Huiying Zhong & Weidong Zhang & Jing Fu & Jun Lu & Hongjun Yin, 2017. "The Performance of Polymer Flooding in Heterogeneous Type II Reservoirs—An Experimental and Field Investigation," Energies, MDPI, vol. 10(4), pages 1-19, April.
    15. Zare, Sh. & Tavakolpour-Saleh, A.R., 2016. "Frequency-based design of a free piston Stirling engine using genetic algorithm," Energy, Elsevier, vol. 109(C), pages 466-480.
    16. Jeong, Jae Sung & Lee, Sang Woo, 2020. "Full aerodynamic loss data for efficient squealer tip design in an axial flow turbine," Energy, Elsevier, vol. 206(C).
    17. Asinari, Pietro & Chiavazzo, Eliodoro, 2014. "The notion of energy through multiple scales: From a molecular level to fluid flows and beyond," Energy, Elsevier, vol. 68(C), pages 870-876.
    18. Li, Ruijie & Grosu, Lavinia & Li, Wei, 2017. "New polytropic model to predict the performance of beta and gamma type Stirling engine," Energy, Elsevier, vol. 128(C), pages 62-76.
    19. Chen, Heng & Qi, Zhen & Dai, Lihao & Li, Bin & Xu, Gang & Yang, Yongping, 2020. "Performance evaluation of a new conceptual combustion air preheating system in a 1000 MW coal-fueled power plant," Energy, Elsevier, vol. 193(C).
    20. Ni, Mingjiang & Shi, Bingwei & Xiao, Gang & Peng, Hao & Sultan, Umair & Wang, Shurong & Luo, Zhongyang & Cen, Kefa, 2016. "Improved Simple Analytical Model and experimental study of a 100W β-type Stirling engine," Applied Energy, Elsevier, vol. 169(C), pages 768-787.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:102:y:2016:i:c:p:252-259. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.