Flow and heat transfer characteristics of air compression in a liquid piston for compressed air energy storage
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2022.124305
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Odukomaiya, Adewale & Abu-Heiba, Ahmad & Gluesenkamp, Kyle R. & Abdelaziz, Omar & Jackson, Roderick K. & Daniel, Claus & Graham, Samuel & Momen, Ayyoub M., 2016. "Thermal analysis of near-isothermal compressed gas energy storage system," Applied Energy, Elsevier, vol. 179(C), pages 948-960.
- Zhou, Qian & Du, Dongmei & Lu, Chang & He, Qing & Liu, Wenyi, 2019. "A review of thermal energy storage in compressed air energy storage system," Energy, Elsevier, vol. 188(C).
- Li, Chengchen & Wang, Huanran & He, Xin & Zhang, Yan, 2022. "Experimental and thermodynamic investigation on isothermal performance of large-scaled liquid piston," Energy, Elsevier, vol. 249(C).
- Bai, Jiayu & Wei, Wei & Chen, Laijun & Mei, Shengwei, 2020. "Modeling and dispatch of advanced adiabatic compressed air energy storage under wide operating range in distribution systems with renewable generation," Energy, Elsevier, vol. 206(C).
- Qin, Chao & Loth, Eric, 2014. "Liquid piston compression efficiency with droplet heat transfer," Applied Energy, Elsevier, vol. 114(C), pages 539-550.
- Luo, Xing & Wang, Jihong & Dooner, Mark & Clarke, Jonathan, 2015. "Overview of current development in electrical energy storage technologies and the application potential in power system operation," Applied Energy, Elsevier, vol. 137(C), pages 511-536.
- Van de Ven, James D. & Li, Perry Y., 2009. "Liquid piston gas compression," Applied Energy, Elsevier, vol. 86(10), pages 2183-2191, October.
- Seferlis, Panos & Varbanov, Petar Sabev & Papadopoulos, Athanasios I. & Chin, Hon Huin & Klemeš, Jiří Jaromír, 2021. "Sustainable design, integration, and operation for energy high-performance process systems," Energy, Elsevier, vol. 224(C).
- Wieberdink, Jacob & Li, Perry Y. & Simon, Terrence W. & Van de Ven, James D., 2018. "Effects of porous media insert on the efficiency and power density of a high pressure (210 bar) liquid piston air compressor/expander – An experimental study," Applied Energy, Elsevier, vol. 212(C), pages 1025-1037.
- Budt, Marcus & Wolf, Daniel & Span, Roland & Yan, Jinyue, 2016. "A review on compressed air energy storage: Basic principles, past milestones and recent developments," Applied Energy, Elsevier, vol. 170(C), pages 250-268.
- Pelay, Ugo & Luo, Lingai & Fan, Yilin & Stitou, Driss & Castelain, Cathy, 2019. "Integration of a thermochemical energy storage system in a Rankine cycle driven by concentrating solar power: Energy and exergy analyses," Energy, Elsevier, vol. 167(C), pages 498-510.
- Fan, Dongming & Ren, Yi & Feng, Qiang & Liu, Yiliu & Wang, Zili & Lin, Jing, 2021. "Restoration of smart grids: Current status, challenges, and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Wang, Ke & Cui, Qian & Liu, Yixue & He, Qing, 2024. "Performance analysis of a novel isothermal compressed carbon dioxide energy storage system integrated with solar thermal storage," Energy, Elsevier, vol. 303(C).
- Chen, Wei & Bai, Jianshu & Wang, Guohua & Xie, Ningning & Ma, Linrui & Wang, Yazhou & Zhang, Tong & Xue, Xiaodai, 2023. "First and second law analysis and operational mode optimization of the compression process for an advanced adiabatic compressed air energy storage based on the established comprehensive dynamic model," Energy, Elsevier, vol. 263(PC).
- Peng Li & Zongguang Chen & Xuezhi Zhou & Haisheng Chen & Zhi Wang, 2022. "Temperature Regulation Model and Experimental Study of Compressed Air Energy Storage Cavern Heat Exchange System," Sustainability, MDPI, vol. 14(11), pages 1-16, June.
- Gouda, El Mehdi & Neu, Thibault & Benaouicha, Mustapha & Fan, Yilin & Subrenat, Albert & Luo, Lingai, 2023. "Experimental and numerical investigation on the flow and heat transfer behaviors during a compression–cooling–expansion cycle using a liquid piston for compressed air energy storage," Energy, Elsevier, vol. 277(C).
- Chouder, Ryma & Benabdesselam, Azzedine & Stouffs, Pascal, 2023. "Modeling results of a new high performance free liquid piston engine," Energy, Elsevier, vol. 263(PD).
- Li, Ruixiong & Tao, Rui & Yao, Erren & Chen, Hao & Zhang, Haoran & Xu, Xuefang & Wang, Huanran, 2023. "Comprehensive thermo-exploration of a near-isothermal compressed air energy storage system with a pre-compressing process and heat pump discharging," Energy, Elsevier, vol. 268(C).
- Aliaga, D.M. & Romero, C.P. & Feick, R. & Brooks, W.K. & Campbell, A.N., 2024. "Modelling and simulation of a novel liquid air energy storage system with a liquid piston, NH3 and CO2 cycles for enhanced heat and cold utilisation," Applied Energy, Elsevier, vol. 362(C).
- Emiliano Borri & Alessio Tafone & Gabriele Comodi & Alessandro Romagnoli & Luisa F. Cabeza, 2022. "Compressed Air Energy Storage—An Overview of Research Trends and Gaps through a Bibliometric Analysis," Energies, MDPI, vol. 15(20), pages 1-21, October.
- Chen, Longxiang & Zhang, Liugan & Yang, Huipeng & Xie, Meina & Ye, Kai, 2022. "Dynamic simulation of a Re-compressed adiabatic compressed air energy storage (RA-CAES) system," Energy, Elsevier, vol. 261(PB).
- Aliaga, D.M. & Romero, C.P. & Feick, R. & Brooks, W.K. & Campbell, A.N., 2024. "Modelling, simulation, and optimisation of a novel liquid piston system for energy recovery," Applied Energy, Elsevier, vol. 357(C).
- Xiao, Feng & Chen, Wei & Zhang, Bin & Zhang, Tong & Xie, Ningning & Wang, Zhitao & Chen, Hui & Xue, Xiaodai, 2023. "A novel constant power operation mode of constant volume expansion process for AA-CAES: Regulation strategy, dynamic simulation, and comparison," Energy, Elsevier, vol. 284(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Gouda, El Mehdi & Neu, Thibault & Benaouicha, Mustapha & Fan, Yilin & Subrenat, Albert & Luo, Lingai, 2023. "Experimental and numerical investigation on the flow and heat transfer behaviors during a compression–cooling–expansion cycle using a liquid piston for compressed air energy storage," Energy, Elsevier, vol. 277(C).
- Patil, Vikram C. & Acharya, Pinaki & Ro, Paul I., 2020. "Experimental investigation of water spray injection in liquid piston for near-isothermal compression," Applied Energy, Elsevier, vol. 259(C).
- Bazdar, Elaheh & Sameti, Mohammad & Nasiri, Fuzhan & Haghighat, Fariborz, 2022. "Compressed air energy storage in integrated energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
- Barah Ahn & Paul I. Ro, 2023. "Experimental Investigation of Impacts of Initial Pressure Levels on Compression Efficiency and Dissolution in Liquid Piston Gas Compression," Energies, MDPI, vol. 16(4), pages 1-28, February.
- Zhang, Xinjing & Xu, Yujie & Zhou, Xuezhi & Zhang, Yi & Li, Wen & Zuo, Zhitao & Guo, Huan & Huang, Ye & Chen, Haisheng, 2018. "A near-isothermal expander for isothermal compressed air energy storage system," Applied Energy, Elsevier, vol. 225(C), pages 955-964.
- Aliaga, D.M. & Romero, C.P. & Feick, R. & Brooks, W.K. & Campbell, A.N., 2024. "Modelling and simulation of a novel liquid air energy storage system with a liquid piston, NH3 and CO2 cycles for enhanced heat and cold utilisation," Applied Energy, Elsevier, vol. 362(C).
- Bennett, Jeffrey A. & Simpson, Juliet G. & Qin, Chao & Fittro, Roger & Koenig, Gary M. & Clarens, Andres F. & Loth, Eric, 2021. "Techno-economic analysis of offshore isothermal compressed air energy storage in saline aquifers co-located with wind power," Applied Energy, Elsevier, vol. 303(C).
- Gao, Ziyu & Zhang, Xinjing & Li, Xiaoyu & Xu, Yujie & Chen, Haisheng, 2023. "Thermodynamic analysis of isothermal compressed air energy storage system with droplets injection," Energy, Elsevier, vol. 284(C).
- Odukomaiya, Adewale & Abu-Heiba, Ahmad & Graham, Samuel & Momen, Ayyoub M., 2018. "Experimental and analytical evaluation of a hydro-pneumatic compressed-air Ground-Level Integrated Diverse Energy Storage (GLIDES) system," Applied Energy, Elsevier, vol. 221(C), pages 75-85.
- He, Wei & Wang, Jihong, 2018. "Optimal selection of air expansion machine in Compressed Air Energy Storage: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 87(C), pages 77-95.
- Chen, Long Xiang & Xie, Mei Na & Zhao, Pan Pan & Wang, Feng Xiang & Hu, Peng & Wang, Dong Xiang, 2018. "A novel isobaric adiabatic compressed air energy storage (IA-CAES) system on the base of volatile fluid," Applied Energy, Elsevier, vol. 210(C), pages 198-210.
- Li, Chengchen & Wang, Huanran & He, Xin & Zhang, Yan, 2022. "Experimental and thermodynamic investigation on isothermal performance of large-scaled liquid piston," Energy, Elsevier, vol. 249(C).
- He, Yang & MengWang, & Chen, Haisheng & Xu, Yujie & Deng, Jianqiang, 2021. "Thermodynamic research on compressed air energy storage system with turbines under sliding pressure operation," Energy, Elsevier, vol. 222(C).
- He, Yang & Chen, Haisheng & Xu, Yujie & Deng, Jianqiang, 2018. "Compression performance optimization considering variable charge pressure in an adiabatic compressed air energy storage system," Energy, Elsevier, vol. 165(PB), pages 349-359.
- King, Marcus & Jain, Anjali & Bhakar, Rohit & Mathur, Jyotirmay & Wang, Jihong, 2021. "Overview of current compressed air energy storage projects and analysis of the potential underground storage capacity in India and the UK," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
- Fu, Hailun & He, Qing & Song, Jintao & Shi, Xinping & Hao, Yinping & Du, Dongmei & Liu, Wenyi, 2021. "Thermodynamic of a novel advanced adiabatic compressed air energy storage system with variable pressure ratio coupled organic rankine cycle," Energy, Elsevier, vol. 227(C).
- Aliaga, D.M. & Romero, C.P. & Feick, R. & Brooks, W.K. & Campbell, A.N., 2024. "Modelling, simulation, and optimisation of a novel liquid piston system for energy recovery," Applied Energy, Elsevier, vol. 357(C).
- Yang, Lichao & Cai, Zuansi & Li, Cai & He, Qingcheng & Ma, Yan & Guo, Chaobin, 2020. "Numerical investigation of cycle performance in compressed air energy storage in aquifers," Applied Energy, Elsevier, vol. 269(C).
- Yu, Qihui & Wang, Qiancheng & Tan, Xin & Li, XiaoFei, 2021. "Water spray heat transfer gas compression for compressed air energy system," Renewable Energy, Elsevier, vol. 179(C), pages 1106-1121.
- Wang, Ke & Cui, Qian & Liu, Yixue & He, Qing, 2024. "Performance analysis of a novel isothermal compressed carbon dioxide energy storage system integrated with solar thermal storage," Energy, Elsevier, vol. 303(C).
More about this item
Keywords
Compressed air energy storage (CAES); Liquid piston (LP); Air compression; Flow regime; VOF method; Heat transfer;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:254:y:2022:i:pb:s0360544222012087. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.