IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v254y2022ipas0360544222011665.html
   My bibliography  Save this article

Effect of bed particle size on the gas-particle hydrodynamics and wall erosion characteristics in a 550 MWe USC CFB boiler using CPFD simulation

Author

Listed:
  • Lee, Byoung-Hwa
  • Kim, Kang-Min
  • Bae, Yoon-Ho
  • Oh, Hyun-Suk
  • Kim, Gyu-Bo
  • Jeon, Chung-Hwan
  • Ahn, Young-Heon

Abstract

To reduce wall erosion in 550 MWe ultra-supercritical (USC) circulating fluidized bed (CFB) boiler, the effect of bed particle size with gas-particle hydrodynamics characteristics is investigated here through computational particle fluid dynamics (CPFD). Most studies on erosion until now have dealt with pilot scale system, but the present study aims to provide valuable information on erosion at full scale in the CFB boiler. The results showed that particle size significantly affected the gas-solid flow in the furnace. Larger particles were difficult to be entrained by the gas stream, which increased the internal circulating rate instead of reducing the external circulation rate. Furthermore, erosion was also influenced by both particle size and circulation rate but did not linearly increase with the particle size. In the cyclone, the erosion rate is highest, which gradually decreases with increasing particle size due to external circulation rate, but the erosion tendency of furnace and other devices are rather highest with the medium-sized particles. As the hydrodynamics and erosion of a USC CFB boiler were studied through CPFD simulation for the first time, the findings of this study may provide considerable insight into and guidance for efficient boiler operation and prevention of shutdown due to erosion.

Suggested Citation

  • Lee, Byoung-Hwa & Kim, Kang-Min & Bae, Yoon-Ho & Oh, Hyun-Suk & Kim, Gyu-Bo & Jeon, Chung-Hwan & Ahn, Young-Heon, 2022. "Effect of bed particle size on the gas-particle hydrodynamics and wall erosion characteristics in a 550 MWe USC CFB boiler using CPFD simulation," Energy, Elsevier, vol. 254(PA).
  • Handle: RePEc:eee:energy:v:254:y:2022:i:pa:s0360544222011665
    DOI: 10.1016/j.energy.2022.124263
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222011665
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.124263?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kraft, Stephan & Kirnbauer, Friedrich & Hofbauer, Hermann, 2017. "CPFD simulations of an industrial-sized dual fluidized bed steam gasification system of biomass with 8MW fuel input," Applied Energy, Elsevier, vol. 190(C), pages 408-420.
    2. Li, Dongfang & Cai, Runxia & Zhang, Man & Yang, Hairui & Choi, Kyeong & Ahn, Seokgi & Jeon, Chung-Hwan, 2020. "Operation characteristics of a bubbling fluidized bed heat exchanger with internal solid circulation for a 550-MWe ultra-supercritical CFB boiler," Energy, Elsevier, vol. 192(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yao, Liming & Liu, Yuxi & Xiao, Zhongmin & Chen, Yang, 2023. "An algorithm combining sedimentation experiments for pipe erosion investigation," Energy, Elsevier, vol. 270(C).
    2. Banerjee, Subhodeep & Shahnam, Mehrdad & Rogers, William A. & Hughes, Robin W., 2023. "Transient simulation of biomass combustion in a circulating fluidized bed riser," Energy, Elsevier, vol. 264(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kuba, Matthias & Kraft, Stephan & Kirnbauer, Friedrich & Maierhans, Frank & Hofbauer, Hermann, 2018. "Influence of controlled handling of solid inorganic materials and design changes on the product gas quality in dual fluid bed gasification of woody biomass," Applied Energy, Elsevier, vol. 210(C), pages 230-240.
    2. Bai, Zhang & Gu, Yucheng & Wang, Shuoshuo & Jiang, Tieliu & Kong, Debin & Li, Qi, 2023. "Applying the solar solid particles as heat carrier to enhance the solar-driven biomass gasification with dynamic operation power generation performance analysis," Applied Energy, Elsevier, vol. 351(C).
    3. Artur Blaszczuk & Szymon Jagodzik, 2021. "Investigation of Heat Transfer in a Large-Scale External Heat Exchanger with Horizontal Smooth Tube Bundle," Energies, MDPI, vol. 14(17), pages 1-24, September.
    4. Armando Vitale & Andrea Di Carlo & Pier Ugo Foscolo & Alessandro Antonio Papa, 2024. "Kinetic Model Implementation of Fluidized Bed Devolatilization," Energies, MDPI, vol. 17(13), pages 1-17, June.
    5. Zhou, Mengmeng & Wang, Shuai & Luo, Kun & Fan, Jianren, 2022. "Three-dimensional modeling study of the oxy-fuel co-firing of coal and biomass in a bubbling fluidized bed," Energy, Elsevier, vol. 247(C).
    6. Li, Dongfang & Qu, Xiaoxiao & Li, Junjie & Hong, Suck Won & Jeon, Chung-hwan, 2022. "Microstructural development of product layer during limestone sulfation and its relationship to agglomeration in large-scale CFB boiler," Energy, Elsevier, vol. 238(PC).
    7. Nguyen, Nhut M. & Alobaid, Falah & May, Jan & Peters, Jens & Epple, Bernd, 2020. "Experimental study on steam gasification of torrefied woodchips in a bubbling fluidized bed reactor," Energy, Elsevier, vol. 202(C).
    8. Chen, Yuyang & Yang, Shiliang & Hu, Jianhang & Wang, Hua, 2023. "Investigation of the oxy-fuel combustion process in the full-loop circulating fluidized bed," Energy, Elsevier, vol. 283(C).
    9. Jun Li & Lixian Wang & Yong Chi & Zhaozhi Zhou & Yuanjun Tang & Hui Zhang, 2021. "Life Cycle Assessment of Advanced Circulating Fluidized Bed Municipal Solid Waste Incineration System from an Environmental and Exergetic Perspective," IJERPH, MDPI, vol. 18(19), pages 1-16, October.
    10. Yang, Shiliang & Zhou, Tao & Wei, Yonggang & Hu, Jianhang & Wang, Hua, 2020. "Dynamical and thermal property of rising bubbles in the bubbling fluidized biomass gasifier with wide particle size distribution," Applied Energy, Elsevier, vol. 259(C).
    11. Rajan Jaiswal & Britt. M. E. Moldestad & Marianne S. Eikeland & Henrik K. Nielsen & Rajan Kumar Thapa, 2022. "Image Processing and Measurement of the Bubble Properties in a Bubbling Fluidized Bed Reactor," Energies, MDPI, vol. 15(21), pages 1-18, October.
    12. Karl, Jürgen & Pröll, Tobias, 2018. "Steam gasification of biomass in dual fluidized bed gasifiers: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 64-78.
    13. Zhou, Tao & Yang, Shiliang & Wei, Yonggang & Hu, Jianhang & Wang, Hua, 2020. "Impact of wide particle size distribution on the gasification performance of biomass in a bubbling fluidized bed gasifier," Renewable Energy, Elsevier, vol. 148(C), pages 534-547.
    14. Parascanu, M.M. & Puig-Gamero, M. & Soreanu, G. & Valverde, J.L. & Sanchez-Silva, L., 2019. "Comparison of three Mexican biomasses valorization through combustion and gasification: Environmental and economic analysis," Energy, Elsevier, vol. 189(C).
    15. Wu, Congcong & Yang, Haitao & He, Xiaohei & Hu, Chaoquan & Yang, Le & Li, Hongtao, 2022. "Principle, development, application design and prospect of fluidized bed heat exchange technology: Comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    16. David Wünsch & Verena Sulzgruber & Markus Haider & Heimo Walter, 2020. "FP-TES: A Fluidisation-Based Particle Thermal Energy Storage, Part I: Numerical Investigations and Bulk Heat Conductivity," Energies, MDPI, vol. 13(17), pages 1-20, August.
    17. Wan, Zhanghao & Yang, Shiliang & Hu, Jianhang & Bao, Guirong & Wang, Hua, 2022. "CFD study of the reactive gas-solid hydrodynamics in a large-scale catalytic methanol-to-olefin fluidized bed reactor," Energy, Elsevier, vol. 243(C).
    18. Sun, Haoran & Bao, Guirong & Yang, Shiliang & Hu, Jianhang & Wang, Hua, 2023. "Numerical study of the biomass gasification process in an industrial-scale dual fluidized bed gasifier with 8MWth input," Renewable Energy, Elsevier, vol. 211(C), pages 681-696.
    19. Jiang, Kaijun & Du, Xiaoze & Zhang, Qiang & Kong, Yanqiang & Xu, Chao & Ju, Xing, 2021. "Review on gas-solid fluidized bed particle solar receivers applied in concentrated solar applications: Materials, configurations and methodologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    20. Zhang, Fengxia & Yang, Shiliang & Yang, Bin & Wang, Hua, 2022. "Mesoscale bubble dynamics in the gasifier of a 1MWth dual fluidized bed gasifier for biomass gasification," Energy, Elsevier, vol. 238(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:254:y:2022:i:pa:s0360544222011665. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.