IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v18y2021i19p10432-d649577.html
   My bibliography  Save this article

Life Cycle Assessment of Advanced Circulating Fluidized Bed Municipal Solid Waste Incineration System from an Environmental and Exergetic Perspective

Author

Listed:
  • Jun Li

    (State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China)

  • Lixian Wang

    (State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China)

  • Yong Chi

    (State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China)

  • Zhaozhi Zhou

    (Zhejiang Development & Planning Institute, Hangzhou 310012, China)

  • Yuanjun Tang

    (Department of Energy and Environment System Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China)

  • Hui Zhang

    (State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China)

Abstract

The production of clean and efficient energy from municipal solid waste (MSW) is extremely urgent matter due to an increasing energy demand and environmental concerns. In this study, a high steam parameter (520 °C, 7.9 MPa) circulating fluidized bed (CFB) MSW incineration system, equipped with a mechanical, biological treatment and external heat exchanger systems, was introduced and a comparative study with a typical mechanical grate (450 °C, 5.3 MPa) incineration system and conventional CFB (485 °C, 5.3 MPa) incineration system was carried out from a life-cycle, environmental and exergetic perspective which could assess different energy and material outputs based on real operating data. Moreover, the potential system optimization of this advanced CFB system was proposed. The results showed that the advanced CFB system was more environmentally friendly and resource-efficient than conventional MSW incineration systems. The recovery of material should be given priority over energy recovery. According to the assessment of the environment, and energy and material recovery, a process improvement with an incinerated refuse-derived fuel and a semi-compost produced by MBT as a soil conditioner was highly recommended.

Suggested Citation

  • Jun Li & Lixian Wang & Yong Chi & Zhaozhi Zhou & Yuanjun Tang & Hui Zhang, 2021. "Life Cycle Assessment of Advanced Circulating Fluidized Bed Municipal Solid Waste Incineration System from an Environmental and Exergetic Perspective," IJERPH, MDPI, vol. 18(19), pages 1-16, October.
  • Handle: RePEc:gam:jijerp:v:18:y:2021:i:19:p:10432-:d:649577
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/18/19/10432/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/18/19/10432/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Stougie, Lydia & Tsalidis, Georgios A. & van der Kooi, Hedzer J. & Korevaar, Gijsbert, 2018. "Environmental and exergetic sustainability assessment of power generation from biomass," Renewable Energy, Elsevier, vol. 128(PB), pages 520-528.
    2. Hong, Jinglan & Chen, Yilu & Wang, Meng & Ye, Liping & Qi, Congcong & Yuan, Haoran & Zheng, Tao & Li, Xiangzhi, 2017. "Intensification of municipal solid waste disposal in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 168-176.
    3. Tang, Yuanjun & Dong, Jun & Li, Guoneng & Zheng, Youqu & Chi, Yong & Nzihou, Ange & Weiss-Hortala, Elsa & Ye, Chao, 2020. "Environmental and exergetic life cycle assessment of incineration- and gasification-based waste to energy systems in China," Energy, Elsevier, vol. 205(C).
    4. Güereca, Leonor Patricia & Gassó, Santiago & Baldasano, José María & Jiménez-Guerrero, Pedro, 2006. "Life cycle assessment of two biowaste management systems for Barcelona, Spain," Resources, Conservation & Recycling, Elsevier, vol. 49(1), pages 32-48.
    5. Dong, Jun & Jeswani, Harish Kumar & Nzihou, Ange & Azapagic, Adisa, 2020. "The environmental cost of recovering energy from municipal solid waste," Applied Energy, Elsevier, vol. 267(C).
    6. Li, Dongfang & Ke, Xiwei & Zhang, Man & Yang, Hairui & Jung, Sungmook & Ahn, Seokgi & Jeon, Chung-Hwan, 2020. "A comprehensive mass balance model of a 550 MWe ultra-supercritical CFB boiler with internal circulation," Energy, Elsevier, vol. 206(C).
    7. Dong, Jun & Chi, Yong & Zou, Daoan & Fu, Chao & Huang, Qunxing & Ni, Mingjiang, 2014. "Energy–environment–economy assessment of waste management systems from a life cycle perspective: Model development and case study," Applied Energy, Elsevier, vol. 114(C), pages 400-408.
    8. Erb, Karl-Heinz & Krausmann, Fridolin & Gaube, Veronika & Gingrich, Simone & Bondeau, Alberte & Fischer-Kowalski, Marina & Haberl, Helmut, 2009. "Analyzing the global human appropriation of net primary production -- processes, trajectories, implications. An introduction," Ecological Economics, Elsevier, vol. 69(2), pages 250-259, December.
    9. Li, Dongfang & Cai, Runxia & Zhang, Man & Yang, Hairui & Choi, Kyeong & Ahn, Seokgi & Jeon, Chung-Hwan, 2020. "Operation characteristics of a bubbling fluidized bed heat exchanger with internal solid circulation for a 550-MWe ultra-supercritical CFB boiler," Energy, Elsevier, vol. 192(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Natalia Vukovic & Evgenia Makogon, 2022. "Waste-to-Energy Generation: Complex Efficiency Analysis of Modern Technologies," Sustainability, MDPI, vol. 14(21), pages 1-18, October.
    2. Liu, Hanqiao & Qiao, Haoyu & Liu, Shiqi & Wei, Guoxia & Zhao, Hailong & Li, Kai & Weng, Fangkai, 2023. "Energy, environment and economy assessment of sewage sludge incineration technologies in China," Energy, Elsevier, vol. 264(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giovanni Biancini & Barbara Marchetti & Luca Cioccolanti & Matteo Moglie, 2022. "Comprehensive Life Cycle Assessment Analysis of an Italian Composting Facility concerning Environmental Footprint Minimization and Renewable Energy Integration," Sustainability, MDPI, vol. 14(22), pages 1-21, November.
    2. Xing, Zhou & Ping, Zhou & Xiqiang, Zhao & Zhanlong, Song & Wenlong, Wang & Jing, Sun & Yanpeng, Mao, 2021. "Applicability of municipal solid waste incineration (MSWI) system integrated with pre-drying or torrefaction for flue gas waste heat recovery," Energy, Elsevier, vol. 224(C).
    3. Artur Blaszczuk & Szymon Jagodzik, 2021. "Investigation of Heat Transfer in a Large-Scale External Heat Exchanger with Horizontal Smooth Tube Bundle," Energies, MDPI, vol. 14(17), pages 1-24, September.
    4. Li, Dongfang & Qu, Xiaoxiao & Li, Junjie & Hong, Suck Won & Jeon, Chung-hwan, 2022. "Microstructural development of product layer during limestone sulfation and its relationship to agglomeration in large-scale CFB boiler," Energy, Elsevier, vol. 238(PC).
    5. Vlachokostas, Ch. & Michailidou, A.V. & Achillas, Ch., 2021. "Multi-Criteria Decision Analysis towards promoting Waste-to-Energy Management Strategies: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    6. Edmundas Kazimieras Zavadskas & Fausto Cavallaro & Valentinas Podvezko & Ieva Ubarte & Arturas Kaklauskas, 2017. "MCDM Assessment of a Healthy and Safe Built Environment According to Sustainable Development Principles: A Practical Neighborhood Approach in Vilnius," Sustainability, MDPI, vol. 9(5), pages 1-30, April.
    7. Woon, Kok Sin & Lo, Irene M.C., 2016. "An integrated life cycle costing and human health impact analysis of municipal solid waste management options in Hong Kong using modified eco-efficiency indicator," Resources, Conservation & Recycling, Elsevier, vol. 107(C), pages 104-114.
    8. Di Leo, Senatro & Salvia, Monica, 2017. "Local strategies and action plans towards resource efficiency in South East Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 286-305.
    9. Porzio, Giacomo Filippo & Colla, Valentina & Fornai, Barbara & Vannucci, Marco & Larsson, Mikael & Stripple, Håkan, 2016. "Process integration analysis and some economic-environmental implications for an innovative environmentally friendly recovery and pre-treatment of steel scrap," Applied Energy, Elsevier, vol. 161(C), pages 656-672.
    10. da Silva Filho, Valdemar Francisco & Batistella, Luciane & Alves, José Luiz Francisco & da Silva, Jean Constantino Gomes & Althoff, Christine Albrecht & Moreira, Regina de Fátima Peralta Muniz & José,, 2019. "Evaluation of gaseous emissions from thermal conversion of a mixture of solid municipal waste and wood chips in a pilot-scale heat generator," Renewable Energy, Elsevier, vol. 141(C), pages 402-410.
    11. Zhou, Xin & Yan, Hao & Sun, Zongzhuang & Feng, Xiang & Zhao, Hui & Liu, Yibin & Chen, Xiaobo & Yang, Chaohe, 2021. "Opportunities for utilizing waste cooking oil in crude to petrochemical process: Novel process design, optimal strategy, techno-economic analysis and life cycle society-environment assessment," Energy, Elsevier, vol. 237(C).
    12. Moraes, Carlos Alberto Mendes & Kieling, Amanda Gonçalves & Caetano, Marcelo Oliveira & Gomes, Luciana Paulo, 2010. "Life cycle analysis (LCA) for the incorporation of rice husk ash in mortar coating," Resources, Conservation & Recycling, Elsevier, vol. 54(12), pages 1170-1176.
    13. Rubio-Aliaga, Alvaro & García-Cascales, M. Socorro & Sánchez-Lozano, Juan Miguel & Molina-Garcia, Angel, 2021. "MCDM-based multidimensional approach for selection of optimal groundwater pumping systems: Design and case example," Renewable Energy, Elsevier, vol. 163(C), pages 213-224.
    14. Santagata, R. & Ripa, M. & Ulgiati, S., 2017. "An environmental assessment of electricity production from slaughterhouse residues. Linking urban, industrial and waste management systems," Applied Energy, Elsevier, vol. 186(P2), pages 175-188.
    15. Yin, Weijie & Wang, Shuai & Zhang, Kai & He, Yurong, 2020. "Numerical investigation of in situ gasification chemical looping combustion of biomass in a fluidized bed reactor," Renewable Energy, Elsevier, vol. 151(C), pages 216-225.
    16. Soltanian, Salman & Kalogirou, Soteris A. & Ranjbari, Meisam & Amiri, Hamid & Mahian, Omid & Khoshnevisan, Benyamin & Jafary, Tahereh & Nizami, Abdul-Sattar & Gupta, Vijai Kumar & Aghaei, Siavash & Pe, 2022. "Exergetic sustainability analysis of municipal solid waste treatment systems: A systematic critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    17. Kastner, Thomas, 2009. "Trajectories in human domination of ecosystems: Human appropriation of net primary production in the Philippines during the 20th century," Ecological Economics, Elsevier, vol. 69(2), pages 260-269, December.
    18. Catherine Lalman & Hirushie Karunathilake & Rajeev Ruparathna, 2023. "To Dispose or to Reuse? Analyzing the Life Cycle Impacts and Costs of Disposal, Sterilization, and Reuse of Electrophysiological Catheters," Sustainability, MDPI, vol. 15(6), pages 1-23, March.
    19. Erb, Karl-Heinz & Krausmann, Fridolin & Lucht, Wolfgang & Haberl, Helmut, 2009. "Embodied HANPP: Mapping the spatial disconnect between global biomass production and consumption," Ecological Economics, Elsevier, vol. 69(2), pages 328-334, December.
    20. Lauk, Christian & Erb, Karl-Heinz, 2009. "Biomass consumed in anthropogenic vegetation fires: Global patterns and processes," Ecological Economics, Elsevier, vol. 69(2), pages 301-309, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2021:i:19:p:10432-:d:649577. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.