Evolution characteristics of coal microstructure and its influence on methane adsorption capacity under high temperature pyrolysis
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2022.124262
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Li, Jinhu & Li, Zenghua & Yang, Yongliang & Duan, Yujian & Xu, Jun & Gao, Ruiting, 2019. "Examination of CO, CO2 and active sites formation during isothermal pyrolysis of coal at low temperatures," Energy, Elsevier, vol. 185(C), pages 28-38.
- Li, He & Shi, Shiliang & Lin, Baiquan & Lu, Jiexin & Ye, Qing & Lu, Yi & Wang, Zheng & Hong, Yidu & Zhu, Xiangnan, 2019. "Effects of microwave-assisted pyrolysis on the microstructure of bituminous coals," Energy, Elsevier, vol. 187(C).
- Gan, Qingqing & Xu, Jiang & Peng, Shoujian & Yan, Fazhi & Wang, Ruifang & Cai, Guoliang, 2021. "Effect of heating on the molecular carbon structure and the evolution of mechanical properties of briquette coal," Energy, Elsevier, vol. 237(C).
- Duan, Wenjun & Yu, Qingbo & Xie, Huaqing & Qin, Qin, 2017. "Pyrolysis of coal by solid heat carrier-experimental study and kinetic modeling," Energy, Elsevier, vol. 135(C), pages 317-326.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Gaoming Wei & Li Ma & Hu Wen & Xin Yi & Jun Deng & Shangming Liu & Zhenbao Li & Duo Zhang, 2023. "Deformation-Failure Characteristics of Coal with Liquid CO 2 Cryogenic-Freezing Process: An Experimental and Digital Study," Energies, MDPI, vol. 16(17), pages 1-19, August.
- Nie, Bin & Sun, Sijia, 2023. "Thermal recovery of offshore coalbed methane reservoirs: Flow characteristics of superheated steam in wellbores," Energy, Elsevier, vol. 266(C).
- Dang, Zheng & Su, Linan & Wang, Xiaoming & Hou, Shihui, 2023. "Experimental study of the effect of ClO2 on coal: Implication for coalbed methane recovery with oxidant stimulation," Energy, Elsevier, vol. 271(C).
- Song, Haoran & Zhong, Zheng & Lin, Baiquan, 2023. "Impact of methane gas diffusion in coal on elastic modulus and porosity: Modeling and analysis," Energy, Elsevier, vol. 271(C).
- Jiang, Bingyou & Zhang, Yi & Zheng, Yuannan & Yu, Chang-Fei & Wang, Shiju & Lin, Hanyi & Lu, Kunlun & Ren, Bo & Nie, Wen & Yu, Haiming & Zhou, Yu & Wang, Ying, 2024. "Effect of acid-thermal coupling on the chemical structure and wettability of coal: An experimental study," Energy, Elsevier, vol. 294(C).
- Gao, Changjing & Liu, Dameng & Vandeginste, Veerle & Cai, Yidong & Sun, Fengrui, 2023. "Thermodynamic energy change and occurrence mechanism of multiple fluids in coal reservoirs," Energy, Elsevier, vol. 283(C).
- Li, Yunzhuo & Ji, Huaijun & Li, Guichuan & Hu, Shaobin & Liu, Xu, 2023. "Effect of supercritical CO2 transient high-pressure fracturing on bituminous coal microstructure," Energy, Elsevier, vol. 282(C).
- Wang, Hao & Wang, Liang & Zheng, Siwen & Sun, Yiwei & Shen, Shangkun & Zhang, Xiaolei, 2024. "Research on coal matrix pore structure evolution and adsorption behavior characteristics under different thermal stimulation," Energy, Elsevier, vol. 287(C).
- Yang, Dingding & Peng, Kai & Zheng, Yu & Chen, Yujia & Zheng, Juan & Wang, Man & Chen, Si, 2023. "Study on the characteristics of coal and gas outburst hazard under the influence of high formation temperature in deep mines," Energy, Elsevier, vol. 268(C).
- Wang, Yihan & Yang, Wei & Yang, Wenming & Luo, Liming & lyu, Jieyao, 2024. "Effect of AES anionic surfactant on the microstructure and wettability of coal," Energy, Elsevier, vol. 289(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Gan, Qingqing & Xu, Jiang & Peng, Shoujian & Yan, Fazhi & Wang, Ruifang & Cai, Guoliang, 2021. "Effect of heating on the molecular carbon structure and the evolution of mechanical properties of briquette coal," Energy, Elsevier, vol. 237(C).
- Li, Min & Yang, Xueqin & Lu, Yi & Wang, Deming & Shi, Shiliang & Ye, Qing & Li, He & Wang, Zheng, 2023. "Thermodynamic variation law and influence mechanism of low-temperature oxidation of lignite samples with different moisture contents," Energy, Elsevier, vol. 262(PB).
- Wang, Yihan & Yang, Wei & Yang, Wenming & Luo, Liming & lyu, Jieyao, 2024. "Effect of AES anionic surfactant on the microstructure and wettability of coal," Energy, Elsevier, vol. 289(C).
- Xin, Lin & An, Mingyu & Feng, Mingze & Li, Kaixuan & Cheng, Weimin & Liu, Weitao & Hu, Xiangming & Wang, Zhigang & Han, Limin, 2021. "Study on pyrolysis characteristics of lump coal in the context of underground coal gasification," Energy, Elsevier, vol. 237(C).
- Zhang, Xun & Liang, Huimin & Lu, Bing & Qiao, Ling & Huang, Ge & Yu, Chen & Zou, Jiahui, 2024. "Correlation and stage change of key groups and thermal effects of spontaneous coal combustion due to long-term ultraviolet illumination," Energy, Elsevier, vol. 293(C).
- Yuxuan Zhou & Shugang Li & Yang Bai & Hang Long & Yuchu Cai & Jingfei Zhang, 2023. "Joint Characterization and Fractal Laws of Pore Structure in Low-Rank Coal," Sustainability, MDPI, vol. 15(12), pages 1-19, June.
- Liu, Hao & Li, Zenghua & Yang, Yongliang & Miao, Guodong, 2023. "Study on the thermal behavior of coal during the spontaneous combustion latency," Energy, Elsevier, vol. 281(C).
- Tao, Ming & Yang, Zheng & Zhao, Yan & Wu, Xingyu & Wu, Chengqing, 2024. "Failure characteristics of microwave heat-treated stressed sandstone: Implications for deep rock breakage using TBM cutting," Energy, Elsevier, vol. 292(C).
- Zhao, Jingyu & Deng, Jun & Wang, Tao & Song, Jiajia & Zhang, Yanni & Shu, Chi-Min & Zeng, Qiang, 2019. "Assessing the effectiveness of a high-temperature-programmed experimental system for simulating the spontaneous combustion properties of bituminous coal through thermokinetic analysis of four oxidatio," Energy, Elsevier, vol. 169(C), pages 587-596.
- Haijun Guo & Zhixiang Cheng & Kai Wang & Baolin Qu & Liang Yuan & Chao Xu, 2020. "Coal permeability evolution characteristics: Analysis under different loading conditions," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(2), pages 347-363, April.
- Moon, Hyeong-Bin & Lee, Ji-Hwan & Kim, Hyung-Tae & Lee, Jin-Wook & Lee, Byoung-Hwa & Jeon, Chung-Hwan, 2024. "Effect of high-pressure pyrolysis on syngas and char structure of petroleum coke," Energy, Elsevier, vol. 299(C).
- Zhao, Xingguo & Dai, Guanglong & Qin, Ruxiang & Zhou, Liang & Li, Jinhu & Li, Jinliang, 2024. "Spontaneous combustion characteristics of coal based on the oxygen consumption rate integral," Energy, Elsevier, vol. 288(C).
- Lei Li & Ting Ren & Xiaoxing Zhong & Jiantao Wang, 2022. "Study of the Abnormal CO-Exceedance Phenomenon in the Tailgate Corner of a Low Metamorphic Coal Seam," Energies, MDPI, vol. 15(15), pages 1-16, July.
- Yongzan, Wen & Guanhua, Ni & Xinyue, Zhang & Yicheng, Zheng & Gang, Wang & Zhenyang, Wang & Qiming, Huang, 2023. "Fine characterization of pore structure of acidified anthracite based on liquid intrusion method and Micro-CT," Energy, Elsevier, vol. 263(PA).
- Zhao, Jingyu & Hang, Gai & Song, Jiajia & Lu, Shiping & Ming, Hanqi & Chang, Jiaming & Deng, Jun & Zhang, Yanni & Shu, Chi-Min, 2023. "Spontaneous oxidation kinetics of weathered coal based upon thermogravimetric characteristics," Energy, Elsevier, vol. 275(C).
- Lan, Wenjian & Wang, Hanxiang & Zhang, Xin & Fan, Hongbo & Feng, Kun & Liu, Yanxin & Sun, Bingyu, 2020. "Investigation on the mechanism of micro-cracks generated by microwave heating in coal and rock," Energy, Elsevier, vol. 206(C).
- Bai, Gang & Su, Jun & Zhang, Zunguo & Lan, Anchang & Zhou, Xihua & Gao, Fei & Zhou, Jianbin, 2022. "Effect of CO2 injection on CH4 desorption rate in poor permeability coal seams: An experimental study," Energy, Elsevier, vol. 238(PA).
- Luo, Juan & Ma, Rui & Huang, Xiaofei & Sun, Shichang & Wang, Hao, 2020. "Bio-fuels generation and the heat conversion mechanisms in different microwave pyrolysis modes of sludge," Applied Energy, Elsevier, vol. 266(C).
- Liu, Jia & Xue, Yi & Fu, Yong & Yao, Kai & Liu, Jianqiang, 2023. "Numerical investigation on microwave-thermal recovery of shale gas based on a fully coupled electromagnetic, heat transfer, and multiphase flow model," Energy, Elsevier, vol. 263(PE).
- Li, Jinliang & Lu, Hao & Lu, Wei & Li, Jinhu & Zhang, Qingsong & Zhuo, Hui, 2024. "Study on the kinetic characteristics and control steps of gas production in coal spontaneous combustion under the oxidation path," Energy, Elsevier, vol. 295(C).
More about this item
Keywords
Langmuir adsorption constant; Coal functional group; Coal seam gas; Pore structure; High temperature pyrolysis;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:254:y:2022:i:pa:s0360544222011653. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.