IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v283y2023ics0360544223024830.html
   My bibliography  Save this article

Thermodynamic energy change and occurrence mechanism of multiple fluids in coal reservoirs

Author

Listed:
  • Gao, Changjing
  • Liu, Dameng
  • Vandeginste, Veerle
  • Cai, Yidong
  • Sun, Fengrui

Abstract

Systematic understanding of the occurrence mechanism of multiple fluids in coal reservoirs is the basis for efficient development of coalbed methane (CBM). In this study, the adsorption capacity, adsorption potential and adsorption heat data of coal samples of different metamorphic degrees under single/multi components isothermal adsorption were obtained through isothermal adsorption equipment and the atomic force microscopy (AFM). The adsorption potential energy and electric potential energy were innovatively combined to expound the characteristics of the thermodynamic energy change in coal reservoirs, and the occurrence mechanism of multiple fluids in coal reservoirs were discussed. It is found that: (a) the adsorption amount of these two gases decreases first and then increases with the increase of coal rank in both single-phase adsorption and competitive adsorption. (b) CO2 shows superior adsorption in comparison to CH4. The larger the proportion of a certain component in the mixed gases system, the better this component's adsorption performance. (c) The adsorption potential of the two gases is not affected by temperature, and with the increase of coal metamorphism, the adsorption potential shows first a decrease, followed by an increase. (d) The CH4 adsorption heat of coal samples increase with higher adsorption amount, but the CO2 adsorption heat of some coal samples has a negative linear correlation with adsorption amount.

Suggested Citation

  • Gao, Changjing & Liu, Dameng & Vandeginste, Veerle & Cai, Yidong & Sun, Fengrui, 2023. "Thermodynamic energy change and occurrence mechanism of multiple fluids in coal reservoirs," Energy, Elsevier, vol. 283(C).
  • Handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223024830
    DOI: 10.1016/j.energy.2023.129089
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223024830
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129089?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wen, Hu & Mi, Wansheng & Fan, Shixing & Liu, Mingyang & Cheng, Xiaojiao & Wang, Hu, 2023. "Determining the reasonable volume required to inject liquid CO2 into a single hole and displace CH4 within the coal seam in bedding boreholes: case study of SangShuPing coal mine," Energy, Elsevier, vol. 266(C).
    2. Sun, Fengrui & Liu, Dameng & Cai, Yidong & Qiu, Yongkai, 2023. "Coal rank-pressure coupling control mechanism on gas adsorption/desorption in coalbed methane reservoirs," Energy, Elsevier, vol. 270(C).
    3. Li, Zhongbei & Ren, Ting & Li, Xiangchun & Cheng, Yuanping & He, Xueqiu & Lin, Jia & Qiao, Ming & Yang, Xiaohan, 2023. "Full-scale pore structure characterization of different rank coals and its impact on gas adsorption capacity: A theoretical model and experimental study," Energy, Elsevier, vol. 277(C).
    4. Huang, Liang & Ning, Zhengfu & Wang, Qing & Zhang, Wentong & Cheng, Zhilin & Wu, Xiaojun & Qin, Huibo, 2018. "Effect of organic type and moisture on CO2/CH4 competitive adsorption in kerogen with implications for CO2 sequestration and enhanced CH4 recovery," Applied Energy, Elsevier, vol. 210(C), pages 28-43.
    5. Li, Jiawei & Sun, Chenhao, 2022. "Molecular insights on competitive adsorption and enhanced displacement effects of CO2/CH4 in coal for low-carbon energy technologies," Energy, Elsevier, vol. 261(PB).
    6. Yang, Wei & Wang, Yihan & Yan, Fazhi & Si, Guangyao & Lin, Baiquan, 2022. "Evolution characteristics of coal microstructure and its influence on methane adsorption capacity under high temperature pyrolysis," Energy, Elsevier, vol. 254(PA).
    7. Chen, Junqing & Jiang, Fujie & Cong, Qi & Pang, Xiongqi & Ma, Kuiyou & Shi, Kanyuan & Pang, Bo & Chen, Dongxia & Pang, Hong & Yang, Xiaobin & Wang, Yuying & Li, Bingyao, 2023. "Adsorption characteristics of shale gas in organic–inorganic slit pores," Energy, Elsevier, vol. 278(C).
    8. Geng, Weile & Huang, Gun & Guo, Shengli & Jiang, Changbao & Dong, Ziwen & Wang, Wensong, 2022. "Influence of long-term CH4 and CO2 treatment on the pore structure and mechanical strength characteristics of Baijiao coal," Energy, Elsevier, vol. 242(C).
    9. Abunowara, Mustafa & Sufian, Suriati & Bustam, Mohamad Azmi & Eldemerdash, Usama & Suleman, Humbul & Bencini, Roberto & Assiri, Mohammed Ali & Ullah, Sami & Al-Sehemi, Abdullah G., 2020. "Experimental measurements of carbon dioxide, methane and nitrogen high-pressure adsorption properties onto Malaysian coals under various conditions," Energy, Elsevier, vol. 210(C).
    10. Shi, Qingmin & Cui, Shidong & Wang, Shuangming & Mi, Yichen & Sun, Qiang & Wang, Shengquan & Shi, Chenyu & Yu, Jizhou, 2022. "Experiment study on CO2 adsorption performance of thermal treated coal: Inspiration for CO2 storage after underground coal thermal treatment," Energy, Elsevier, vol. 254(PA).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fu, Shenguang & Wang, Liang & Li, Shuohao & Ni, Sijia & Cheng, Yuanping & Zhang, Xiaolei & Liu, Shimin, 2024. "Re-thinking methane storage mechanism in highly metamorphic coalbed reservoirs — A molecular simulation considering organic components," Energy, Elsevier, vol. 293(C).
    2. Ji, Bingnan & Pan, Hongyu & Pang, Mingkun & Pan, Mingyue & Zhang, Hang & Zhang, Tianjun, 2023. "Molecular simulation of CH4 adsorption characteristics in bituminous coal after different functional group fractures," Energy, Elsevier, vol. 282(C).
    3. Nie, Bin & Sun, Sijia, 2023. "Thermal recovery of coalbed methane: Modeling of heat and mass transfer in wellbores," Energy, Elsevier, vol. 263(PD).
    4. He, Jun & Wang, Bohao & Lu, Zhongliang, 2023. "Experimental study on the effect of magma intrusion and temperature on the pore structure of coal," Energy, Elsevier, vol. 284(C).
    5. Dabbaghi, Ehsan & Ng, Kam, 2024. "Effects of CO2 on the mineralogy, mechanical, and transport properties of rocks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    6. Zang, Jie & Liu, Jialong & He, Jiabei & Zhang, Xiapeng, 2023. "Characterization of the pore structure in Chinese anthracite coal using FIB-SEM tomography and deep learning-based segmentation," Energy, Elsevier, vol. 282(C).
    7. Zhao, Zhi & Lu, Hai-Feng, 2023. "Deep learning interprets failure process of coal reservoir during CO2-desorption by 3D reconstruction techniques," Energy, Elsevier, vol. 282(C).
    8. Wu, Jian & Shen, Luming & Huang, Pengyu & Gan, Yixiang, 2023. "Selective adsorption and transport of CO2–CH4 mixture under nano-confinement," Energy, Elsevier, vol. 273(C).
    9. Li, Jiawei & Sun, Chenhao, 2022. "Molecular insights on competitive adsorption and enhanced displacement effects of CO2/CH4 in coal for low-carbon energy technologies," Energy, Elsevier, vol. 261(PB).
    10. Lei Pan & Ling Chen & Peng Cheng & Haifeng Gai, 2022. "Methane Storage Capacity of Permian Shales with Type III Kerogen in the Lower Yangtze Area, Eastern China," Energies, MDPI, vol. 15(5), pages 1-23, March.
    11. Xu, Chao & Wang, Wenjing & Wang, Kai & Zhou, Aitao & Guo, Lin & Yang, Tong, 2023. "Filling–adsorption mechanism and diffusive transport characteristics of N2/CO2 in coal: Experiment and molecular simulation," Energy, Elsevier, vol. 282(C).
    12. Yang, Xue & Chen, Zeqin & Liu, Xiaoqiang & Xue, Zhiyu & Yue, Fen & Wen, Junjie & Li, Meijun & Xue, Ying, 2022. "Correction of gas adsorption capacity in quartz nanoslit and its application in recovering shale gas resources by CO2 injection: A molecular simulation," Energy, Elsevier, vol. 240(C).
    13. Wang, Ziwei & Qin, Yong & Shen, Jian & Li, Teng & Zhang, Xiaoyang & Cai, Ying, 2022. "A novel permeability prediction model for coal based on dynamic transformation of pores in multiple scales," Energy, Elsevier, vol. 257(C).
    14. Bu, Yun-chuan & Niu, Hui-yong & Wang, Tao & Yang, Yan-xiao & Qiu, Tian, 2024. "Combustion characteristics of the thermal-mechanical coupling of broken coal in multiple atmospheres and the re-ignition laws of residual coal," Energy, Elsevier, vol. 299(C).
    15. Yongzan, Wen & Guanhua, Ni & Xinyue, Zhang & Yicheng, Zheng & Gang, Wang & Zhenyang, Wang & Qiming, Huang, 2023. "Fine characterization of pore structure of acidified anthracite based on liquid intrusion method and Micro-CT," Energy, Elsevier, vol. 263(PA).
    16. Yao, Hongbo & Chen, Yuedu & Liang, Weiguo & Li, Zhigang & Song, Xiaoxia, 2023. "Experimental study on the permeability evolution of coal with CO2 phase transition," Energy, Elsevier, vol. 266(C).
    17. Yang, Dingding & Peng, Kai & Zheng, Yu & Chen, Yujia & Zheng, Juan & Wang, Man & Chen, Si, 2023. "Study on the characteristics of coal and gas outburst hazard under the influence of high formation temperature in deep mines," Energy, Elsevier, vol. 268(C).
    18. Mi, Wansheng & Wen, Hu & Fan, Shixing & Wang, Shibin & Wu, Xueming & Wei, Gaoming & Liu, Bocong & Li, Rijun & Cheng, Xiaojiao & Liu, Mingyang, 2023. "Correlation analysis of injection parameters for low-medium pressure injection of liquid CO2 for CH4 displacement in coal seams," Energy, Elsevier, vol. 278(C).
    19. Yijie Xing & Xianming Xiao & Qin Zhou & Wei Liu & Yanming Zhao, 2023. "Influence of Water on the Methane Adsorption Capacity of Organic-Rich Shales and Its Controlling Factors: A Review," Energies, MDPI, vol. 16(8), pages 1-29, April.
    20. Liu, Haorui & Wang, Shuoyu & Wang, Xiaoqiong & Feng, XiaoJing & Chen, Shuixia, 2022. "A stable solid amine adsorbent with interconnected open-cell structure for rapid CO2 adsorption and CO2/CH4 separation," Energy, Elsevier, vol. 258(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223024830. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.