IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i10p4267-d361744.html
   My bibliography  Save this article

High-Resolution Electricity Spot Price Forecast for the Danish Power Market

Author

Listed:
  • Jannik Schütz Roungkvist

    (Department of Business Development and Technology, Centre for Energy Technologies, Aarhus University, Aarhus BSS, Birk Centerpark 15, DK-7400 Herning, Denmark)

  • Peter Enevoldsen

    (Department of Business Development and Technology, Centre for Energy Technologies, Aarhus University, Aarhus BSS, Birk Centerpark 15, DK-7400 Herning, Denmark)

  • George Xydis

    (Department of Business Development and Technology, Centre for Energy Technologies, Aarhus University, Aarhus BSS, Birk Centerpark 15, DK-7400 Herning, Denmark)

Abstract

Energy markets with a high penetration of renewables are more likely to be challenged by price variations or volatility, which is partly due to the stochastic nature of renewable energy. The Danish electricity market (DK1) is a great example of such a market, as 49% of the power production in DK1 is based on wind power, conclusively challenging the electricity spot price forecast for the Danish power market. The energy industry and academia have tried to find the best practices for spot price forecasting in Denmark, by introducing everything from linear models to sophisticated machine-learning approaches. This paper presents a linear model for price forecasting—based on electricity consumption, thermal power production, wind production and previous electricity prices—to estimate long-term electricity prices in electricity markets with a high wind penetration levels, to help utilities and asset owners to develop risk management strategies and for asset valuation.

Suggested Citation

  • Jannik Schütz Roungkvist & Peter Enevoldsen & George Xydis, 2020. "High-Resolution Electricity Spot Price Forecast for the Danish Power Market," Sustainability, MDPI, vol. 12(10), pages 1-19, May.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:10:p:4267-:d:361744
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/10/4267/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/10/4267/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jónsson, Tryggvi & Pinson, Pierre & Madsen, Henrik, 2010. "On the market impact of wind energy forecasts," Energy Economics, Elsevier, vol. 32(2), pages 313-320, March.
    2. Moral-Carcedo, Julián & Pérez-García, Julián, 2017. "Integrating long-term economic scenarios into peak load forecasting: An application to Spain," Energy, Elsevier, vol. 140(P1), pages 682-695.
    3. Hong, Tao & Pinson, Pierre & Fan, Shu, 2014. "Global Energy Forecasting Competition 2012," International Journal of Forecasting, Elsevier, vol. 30(2), pages 357-363.
    4. Tryggvi Jónsson & Pierre Pinson & Henrik Aa. Nielsen & Henrik Madsen, 2014. "Exponential Smoothing Approaches for Prediction in Real-Time Electricity Markets," Energies, MDPI, vol. 7(6), pages 1-23, June.
    5. Weron, Rafal & Misiorek, Adam, 2008. "Forecasting spot electricity prices: A comparison of parametric and semiparametric time series models," International Journal of Forecasting, Elsevier, vol. 24(4), pages 744-763.
    6. Orhan Altuğ Karabiber & George Xydis, 2019. "Electricity Price Forecasting in the Danish Day-Ahead Market Using the TBATS, ANN and ARIMA Methods," Energies, MDPI, vol. 12(5), pages 1-29, March.
    7. Ketterer, Janina C., 2014. "The impact of wind power generation on the electricity price in Germany," Energy Economics, Elsevier, vol. 44(C), pages 270-280.
    8. Janczura, Joanna & Weron, Rafal, 2010. "An empirical comparison of alternate regime-switching models for electricity spot prices," Energy Economics, Elsevier, vol. 32(5), pages 1059-1073, September.
    9. Karakatsani Nektaria V & Bunn Derek W., 2010. "Fundamental and Behavioural Drivers of Electricity Price Volatility," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 14(4), pages 1-42, September.
    10. Tay, Francis E. H. & Cao, Lijuan, 2001. "Application of support vector machines in financial time series forecasting," Omega, Elsevier, vol. 29(4), pages 309-317, August.
    11. Kristiansen, Tarjei, 2012. "Forecasting Nord Pool day-ahead prices with an autoregressive model," Energy Policy, Elsevier, vol. 49(C), pages 328-332.
    12. Weron, Rafał, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
    13. Russell, Jeffrey R. & Engle, Robert F., 2005. "A Discrete-State Continuous-Time Model of Financial Transactions Prices and Times: The Autoregressive Conditional Multinomial-Autoregressive Conditional Duration Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 166-180, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Meng, Anbo & Wang, Peng & Zhai, Guangsong & Zeng, Cong & Chen, Shun & Yang, Xiaoyi & Yin, Hao, 2022. "Electricity price forecasting with high penetration of renewable energy using attention-based LSTM network trained by crisscross optimization," Energy, Elsevier, vol. 254(PA).
    2. Nazila Pourhaji & Mohammad Asadpour & Ali Ahmadian & Ali Elkamel, 2022. "The Investigation of Monthly/Seasonal Data Clustering Impact on Short-Term Electricity Price Forecasting Accuracy: Ontario Province Case Study," Sustainability, MDPI, vol. 14(5), pages 1-14, March.
    3. Shah, Muhammad Ibrahim & Kirikkaleli, Dervis & Adedoyin, Festus Fatai, 2021. "Regime switching effect of COVID-19 pandemic on renewable electricity generation in Denmark," Renewable Energy, Elsevier, vol. 175(C), pages 797-806.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Billé, Anna Gloria & Gianfreda, Angelica & Del Grosso, Filippo & Ravazzolo, Francesco, 2023. "Forecasting electricity prices with expert, linear, and nonlinear models," International Journal of Forecasting, Elsevier, vol. 39(2), pages 570-586.
    2. Alexandre Lucas & Konstantinos Pegios & Evangelos Kotsakis & Dan Clarke, 2020. "Price Forecasting for the Balancing Energy Market Using Machine-Learning Regression," Energies, MDPI, vol. 13(20), pages 1-16, October.
    3. Gianfreda, Angelica & Ravazzolo, Francesco & Rossini, Luca, 2020. "Comparing the forecasting performances of linear models for electricity prices with high RES penetration," International Journal of Forecasting, Elsevier, vol. 36(3), pages 974-986.
    4. Angelica Gianfreda & Derek Bunn, 2018. "A Stochastic Latent Moment Model for Electricity Price Formation," BEMPS - Bozen Economics & Management Paper Series BEMPS46, Faculty of Economics and Management at the Free University of Bozen.
    5. Weron, Rafał, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
    6. Pape, Christian & Hagemann, Simon & Weber, Christoph, 2016. "Are fundamentals enough? Explaining price variations in the German day-ahead and intraday power market," Energy Economics, Elsevier, vol. 54(C), pages 376-387.
    7. repec:dui:wpaper:1502 is not listed on IDEAS
    8. Brusaferri, Alessandro & Matteucci, Matteo & Portolani, Pietro & Vitali, Andrea, 2019. "Bayesian deep learning based method for probabilistic forecast of day-ahead electricity prices," Applied Energy, Elsevier, vol. 250(C), pages 1158-1175.
    9. Umut Ugurlu & Ilkay Oksuz & Oktay Tas, 2018. "Electricity Price Forecasting Using Recurrent Neural Networks," Energies, MDPI, vol. 11(5), pages 1-23, May.
    10. Nowotarski, Jakub & Weron, Rafał, 2018. "Recent advances in electricity price forecasting: A review of probabilistic forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1548-1568.
    11. Auer, Benjamin R., 2016. "How does Germany's green energy policy affect electricity market volatility? An application of conditional autoregressive range models," Energy Policy, Elsevier, vol. 98(C), pages 621-628.
    12. Rafal Weron & Florian Ziel, 2018. "Electricity price forecasting," HSC Research Reports HSC/18/08, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
    13. Joanna Janczura & Aleksandra Michalak, 2020. "Optimization of Electric Energy Sales Strategy Based on Probabilistic Forecasts," Energies, MDPI, vol. 13(5), pages 1-16, February.
    14. Nowotarski, Jakub & Weron, Rafał, 2016. "On the importance of the long-term seasonal component in day-ahead electricity price forecasting," Energy Economics, Elsevier, vol. 57(C), pages 228-235.
    15. G P Girish & Aviral Kumar Tiwari, 2016. "A comparison of different univariate forecasting models forSpot Electricity Price in India," Economics Bulletin, AccessEcon, vol. 36(2), pages 1039-1057.
    16. repec:hum:wpaper:sfb649dp2016-035 is not listed on IDEAS
    17. López Cabrera, Brenda & Schulz, Franziska, 2016. "Time-adaptive probabilistic forecasts of electricity spot prices with application to risk management," SFB 649 Discussion Papers 2016-035, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    18. Angelica Gianfreda & Francesco Ravazzolo & Luca Rossini, 2023. "Large Time‐Varying Volatility Models for Hourly Electricity Prices," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 85(3), pages 545-573, June.
    19. Thao Pham & Killian Lemoine, 2020. "Impacts of subsidized renewable electricity generation on spot market prices in Germany : Evidence from a GARCH model with panel data," Working Papers hal-02568268, HAL.
    20. Afanasyev, Dmitriy O. & Fedorova, Elena A., 2019. "On the impact of outlier filtering on the electricity price forecasting accuracy," Applied Energy, Elsevier, vol. 236(C), pages 196-210.
    21. repec:dui:wpaper:1504 is not listed on IDEAS
    22. Goodarzi, Shadi & Perera, H. Niles & Bunn, Derek, 2019. "The impact of renewable energy forecast errors on imbalance volumes and electricity spot prices," Energy Policy, Elsevier, vol. 134(C).
    23. Grzegorz Marcjasz & Tomasz Serafin & Rafał Weron, 2018. "Selection of Calibration Windows for Day-Ahead Electricity Price Forecasting," Energies, MDPI, vol. 11(9), pages 1-20, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:10:p:4267-:d:361744. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.