IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v182y2016icp299-319.html
   My bibliography  Save this article

Daily cooling of one-story buildings using domed roof and solar adsorption cooling system

Author

Listed:
  • Poshtiri, Amin Haghighi
  • Bahar, Safoura
  • Jafari, Azadeh

Abstract

This study investigates a new system which utilizes a solar driven adsorption chiller to provide natural cooling of a one-story building with domed roof, theoretically. The domed roof provides natural ventilation, and the ambient air flowing into the building is cooled in a cooling channel with the assistance of the adsorption chiller. The influence of geometric parameters such as the size of the inlet and outlet vent, and the depth of the cooling channel on air change per hour (ACH) is studied. In addition, the room temperature is evaluated for different values of room cooling demand and ACH, under different ambient conditions. The system’s ability to provide thermal comfort in the room is also investigated. The results show that ACH can be controlled by changing the size of the inlet air vent. It is also found that adaptive thermal comfort condition (ATCS) is achieved under larger cooling demand values when ACH goes up. Furthermore, use of three cooling plates in the channel instead of two plates increases the maximum cooling demand for which thermal comfort is achieved, according to ATCS, from 775W to 1295W. Moreover, application of the proposed system for cooling of a building in Bandar Abbas consumes 45% less electric energy in comparison with a split air conditioner of the same capacity.

Suggested Citation

  • Poshtiri, Amin Haghighi & Bahar, Safoura & Jafari, Azadeh, 2016. "Daily cooling of one-story buildings using domed roof and solar adsorption cooling system," Applied Energy, Elsevier, vol. 182(C), pages 299-319.
  • Handle: RePEc:eee:appene:v:182:y:2016:i:c:p:299-319
    DOI: 10.1016/j.apenergy.2016.08.132
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916312326
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.08.132?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yaghoubi, M.A., 1991. "Air flow patterns around domed roof buildings," Renewable Energy, Elsevier, vol. 1(3), pages 345-350.
    2. El-Sharkawy, Ibrahim I. & AbdelMeguid, Hossam & Saha, Bidyut Baran, 2014. "Potential application of solar powered adsorption cooling systems in the Middle East," Applied Energy, Elsevier, vol. 126(C), pages 235-245.
    3. Zhai, X.Q. & Wang, R.Z., 2010. "Experimental investigation and performance analysis on a solar adsorption cooling system with/without heat storage," Applied Energy, Elsevier, vol. 87(3), pages 824-835, March.
    4. Luo, Huilong & Wang, Ruzhu & Dai, Yanjun, 2010. "The effects of operation parameter on the performance of a solar-powered adsorption chiller," Applied Energy, Elsevier, vol. 87(10), pages 3018-3022, October.
    5. Choudhury, Biplab & Saha, Bidyut Baran & Chatterjee, Pradip K. & Sarkar, Jyoti Prakas, 2013. "An overview of developments in adsorption refrigeration systems towards a sustainable way of cooling," Applied Energy, Elsevier, vol. 104(C), pages 554-567.
    6. Nijegorodov, N. & Devan, K.R.S. & Jain, P.K. & Carlsson, S., 1994. "Atmospheric transmittance models and an analytical method to predict the optimum slope of an absorber plate, variously oriented at any latitude," Renewable Energy, Elsevier, vol. 4(5), pages 529-543.
    7. Alahmer, Ali & Wang, Xiaolin & Al-Rbaihat, Raed & Amanul Alam, K.C. & Saha, B.B., 2016. "Performance evaluation of a solar adsorption chiller under different climatic conditions," Applied Energy, Elsevier, vol. 175(C), pages 293-304.
    8. Zhai, X.Q. & Wang, R.Z. & Wu, J.Y. & Dai, Y.J. & Ma, Q., 2008. "Design and performance of a solar-powered air-conditioning system in a green building," Applied Energy, Elsevier, vol. 85(5), pages 297-311, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Zhou & Yin, Yu & Shao, Junpeng & Liu, Yerong & Zhang, Lin & Cui, Qun & Wang, Haiyan, 2020. "Study on heat transfer and cooling performance of copper foams cured MIL-101 adsorption unit tube," Energy, Elsevier, vol. 191(C).
    2. Bellos, Evangelos & Tzivanidis, Christos & Tsimpoukis, Dimitrios, 2017. "Multi-criteria evaluation of parabolic trough collector with internally finned absorbers," Applied Energy, Elsevier, vol. 205(C), pages 540-561.
    3. Mirzazade Akbarpoor, Ali & Haghighi Poshtiri, Amin & Biglari, Faraz, 2021. "Performance analysis of domed roof integrated with earth-to-air heat exchanger system to meet thermal comfort conditions in buildings," Renewable Energy, Elsevier, vol. 168(C), pages 1265-1293.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alahmer, Ali & Ajib, Salman & Wang, Xiaolin, 2019. "Comprehensive strategies for performance improvement of adsorption air conditioning systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 99(C), pages 138-158.
    2. Prieto, Alejandro & Knaack, Ulrich & Auer, Thomas & Klein, Tillmann, 2019. "COOLFACADE: State-of-the-art review and evaluation of solar cooling technologies on their potential for façade integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 395-414.
    3. Reda, Francesco & Viot, Maxime & Sipilä, Kari & Helm, Martin, 2016. "Energy assessment of solar cooling thermally driven system configurations for an office building in a Nordic country," Applied Energy, Elsevier, vol. 166(C), pages 27-43.
    4. Hassan, H.Z. & Mohamad, A.A. & Al-Ansary, H.A. & Alyousef, Y.M., 2014. "Dynamic analysis of the CTAR (constant temperature adsorption refrigeration) cycle," Energy, Elsevier, vol. 77(C), pages 852-858.
    5. Seol, Sung-Hoon & Nagano, Katsunori & Togawa, Junya, 2020. "Simulation on annual performance of solar adsorption heat pump system using composite natural mesoporous material in different metrological conditions," Renewable Energy, Elsevier, vol. 162(C), pages 1587-1604.
    6. Gordeeva, Larisa & Aristov, Yuri, 2014. "Dynamic study of methanol adsorption on activated carbon ACM-35.4 for enhancing the specific cooling power of adsorptive chillers," Applied Energy, Elsevier, vol. 117(C), pages 127-133.
    7. Alahmer, Ali & Wang, Xiaolin & Al-Rbaihat, Raed & Amanul Alam, K.C. & Saha, B.B., 2016. "Performance evaluation of a solar adsorption chiller under different climatic conditions," Applied Energy, Elsevier, vol. 175(C), pages 293-304.
    8. Allouhi, A. & Kousksou, T. & Jamil, A. & Agrouaz, Y. & Bouhal, T. & Saidur, R. & Benbassou, A., 2016. "Performance evaluation of solar adsorption cooling systems for vaccine preservation in Sub-Saharan Africa," Applied Energy, Elsevier, vol. 170(C), pages 232-241.
    9. Haghighi, A.P. & Pakdel, S.H. & Jafari, A., 2016. "A study of a wind catcher assisted adsorption cooling channel for natural cooling of a 2-storey building," Energy, Elsevier, vol. 102(C), pages 118-138.
    10. El Fadar, Abdellah, 2016. "Novel process for performance enhancement of a solar continuous adsorption cooling system," Energy, Elsevier, vol. 114(C), pages 10-23.
    11. Tomasz Bujok & Marcin Sowa & Piotr Boruta & Łukasz Mika & Karol Sztekler & Patryk Robert Chaja, 2022. "Possibilities of Integrating Adsorption Chiller with Solar Collectors for Polish Climate Zone," Energies, MDPI, vol. 15(17), pages 1-26, August.
    12. Ji, Xu & Li, Ming & Fan, Jieqing & Zhang, Peng & Luo, Bin & Wang, Liuling, 2014. "Structure optimization and performance experiments of a solar-powered finned-tube adsorption refrigeration system," Applied Energy, Elsevier, vol. 113(C), pages 1293-1300.
    13. Sim, Lik Fang, 2014. "Numerical modelling of a solar thermal cooling system under arid weather conditions," Renewable Energy, Elsevier, vol. 67(C), pages 186-191.
    14. Solmuş, İsmail & Yamalı, Cemil & Yıldırım, Cihan & Bilen, Kadir, 2015. "Transient behavior of a cylindrical adsorbent bed during the adsorption process," Applied Energy, Elsevier, vol. 142(C), pages 115-124.
    15. Gado, Mohamed G. & Ookawara, Shinichi & Nada, Sameh & El-Sharkawy, Ibrahim I., 2021. "Hybrid sorption-vapor compression cooling systems: A comprehensive overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    16. Eicker, Ursula & Schneider, Dietrich & Schumacher, Jürgen & Ge, Tianshu & Dai, Yanjun, 2010. "Operational experiences with solar air collector driven desiccant cooling systems," Applied Energy, Elsevier, vol. 87(12), pages 3735-3747, December.
    17. Karamanis, D. & Vardoulakis, E., 2012. "Application of zeolitic materials prepared from fly ash to water vapor adsorption for solar cooling," Applied Energy, Elsevier, vol. 97(C), pages 334-339.
    18. Kojok, Farah & Fardoun, Farouk & Younes, Rafic & Outbib, Rachid, 2016. "Hybrid cooling systems: A review and an optimized selection scheme," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 57-80.
    19. Mokhtar, Marwan & Ali, Muhammad Tauha & Bräuniger, Simon & Afshari, Afshin & Sgouridis, Sgouris & Armstrong, Peter & Chiesa, Matteo, 2010. "Systematic comprehensive techno-economic assessment of solar cooling technologies using location-specific climate data," Applied Energy, Elsevier, vol. 87(12), pages 3766-3778, December.
    20. Hassan Zohair Hassan, 2014. "Performance Evaluation of a Continuous Operation Adsorption Chiller Powered by Solar Energy Using Silica Gel and Water as the Working Pair," Energies, MDPI, vol. 7(10), pages 1-19, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:182:y:2016:i:c:p:299-319. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.