IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v157y2018icp54-64.html
   My bibliography  Save this article

Experimental study on hydrate-based gas separation of mixed CH4/CO2 using unstable ice in a silica gel bed

Author

Listed:
  • Liu, Jun
  • Ding, Jia-Xiang
  • Liang, De-Qing

Abstract

The reduction of energy consumed in the hydrate formation process has attracted a great attention in many fields, such as renewable energy resources and environmental issues. In this work, the water and the ice were investigated by powder X-ray diffraction (PXRD) and cryo-scanning electron microscope (SEM) in the silica gel, and the hydrate-based gas separation of CH4/CO2 mixtures was studied at four different pressures (2.6, 3.7, 4.6 and 5.2 MPa) and three different temperatures (271.1, 268.1 and 263.1 K) in silica gel bed. The results showed that water was transformed into discontinuous unstable hexagonal ice crystals on silica gel surface, which was in favor of hydrate formation. Water conversion to hydrate and normalized gas consumption were up to 100% and 0.151 (mol/mol) at 263.1 K and above 4.2 MPa, respectively. CO2 proportion in hydrate, split fraction of CH4 in equilibrium gas and separation factor were up to 99.60%, 99.8% and 257.34 at 2.6 MPa and in the temperature range of 268.1–271.1 K, respectively. It will be of practical interest in relation to losing methane of multistage hydrate-based biogas purification technology.

Suggested Citation

  • Liu, Jun & Ding, Jia-Xiang & Liang, De-Qing, 2018. "Experimental study on hydrate-based gas separation of mixed CH4/CO2 using unstable ice in a silica gel bed," Energy, Elsevier, vol. 157(C), pages 54-64.
  • Handle: RePEc:eee:energy:v:157:y:2018:i:c:p:54-64
    DOI: 10.1016/j.energy.2018.05.124
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218309587
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.05.124?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhong, Dong-Liang & Li, Zheng & Lu, Yi-Yu & Wang, Jia-Le & Yan, Jin, 2015. "Evaluation of CO2 removal from a CO2+CH4 gas mixture using gas hydrate formation in liquid water and THF solutions," Applied Energy, Elsevier, vol. 158(C), pages 133-141.
    2. Wang, Fei & Fu, Shanfei & Guo, Gang & Jia, Zhen-Zhen & Luo, Sheng-Jun & Guo, Rong-Bo, 2016. "Experimental study on hydrate-based CO2 removal from CH4/CO2 mixture," Energy, Elsevier, vol. 104(C), pages 76-84.
    3. Kapdi, S.S. & Vijay, V.K. & Rajesh, S.K. & Prasad, Rajendra, 2005. "Biogas scrubbing, compression and storage: perspective and prospectus in Indian context," Renewable Energy, Elsevier, vol. 30(8), pages 1195-1202.
    4. Kondo, Wataru & Ohtsuka, Kaoru & Ohmura, Ryo & Takeya, Satoshi & Mori, Yasuhiko H., 2014. "Clathrate-hydrate formation from a hydrocarbon gas mixture: Compositional evolution of formed hydrate during an isobaric semi-batch hydrate-forming operation," Applied Energy, Elsevier, vol. 113(C), pages 864-871.
    5. Babu, Ponnivalavan & Kumar, Rajnish & Linga, Praveen, 2013. "Pre-combustion capture of carbon dioxide in a fixed bed reactor using the clathrate hydrate process," Energy, Elsevier, vol. 50(C), pages 364-373.
    6. Li, Zheng & Zhong, Dong-Liang & Lu, Yi-Yu & Yan, Jin & Zou, Zhen-Lin, 2017. "Preferential enclathration of CO2 into tetra-n-butyl phosphonium bromide semiclathrate hydrate in moderate operating conditions: Application for CO2 capture from shale gas," Applied Energy, Elsevier, vol. 199(C), pages 370-381.
    7. Babu, Ponnivalavan & Ho, Chie Yin & Kumar, Rajnish & Linga, Praveen, 2014. "Enhanced kinetics for the clathrate process in a fixed bed reactor in the presence of liquid promoters for pre-combustion carbon dioxide capture," Energy, Elsevier, vol. 70(C), pages 664-673.
    8. Lee, Yohan & Kim, Yunju & Lee, Jaehyoung & Lee, Huen & Seo, Yongwon, 2015. "CH4 recovery and CO2 sequestration using flue gas in natural gas hydrates as revealed by a micro-differential scanning calorimeter," Applied Energy, Elsevier, vol. 150(C), pages 120-127.
    9. Zhong, Dong-Liang & Ding, Kun & Lu, Yi-Yu & Yan, Jin & Zhao, Wei-Long, 2016. "Methane recovery from coal mine gas using hydrate formation in water-in-oil emulsions," Applied Energy, Elsevier, vol. 162(C), pages 1619-1626.
    10. Xu, Chun-Gang & Zhang, Shao-Hong & Cai, Jing & Chen, Zhao-Yang & Li, Xiao-Sen, 2013. "CO2 (carbon dioxide) separation from CO2–H2 (hydrogen) gas mixtures by gas hydrates in TBAB (tetra-n-butyl ammonium bromide) solution and Raman spectroscopic analysis," Energy, Elsevier, vol. 59(C), pages 719-725.
    11. Xia, Zhi-Ming & Li, Xiao-Sen & Chen, Zhao-Yang & Li, Gang & Yan, Ke-Feng & Xu, Chun-Gang & Lv, Qiu-Nan & Cai, Jing, 2016. "Hydrate-based CO2 capture and CH4 purification from simulated biogas with synergic additives based on gas solvent," Applied Energy, Elsevier, vol. 162(C), pages 1153-1159.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Yongji & He, Yurong & Tang, Tianqi & Zhai, Ming, 2023. "Molecular dynamic simulations of methane hydrate formation between solid surfaces: Implications for methane storage," Energy, Elsevier, vol. 262(PB).
    2. Kou, Xuan & Li, Xiao-Sen & Wang, Yi & Liu, Jian-Wu & Chen, Zhao-Yang, 2021. "Heterogeneity of hydrate-bearing sediments: Definition and effects on fluid flow properties," Energy, Elsevier, vol. 229(C).
    3. Arslan, Muhammed & Yılmaz, Ceyhun, 2022. "Thermodynamic Optimization and Thermoeconomic Evaluation of Afyon Biogas Plant assisted by organic Rankine Cycle for waste heat recovery," Energy, Elsevier, vol. 248(C).
    4. Wang, Xiaolin & Zhang, Fengyuan & Lipiński, Wojciech, 2020. "Research progress and challenges in hydrate-based carbon dioxide capture applications," Applied Energy, Elsevier, vol. 269(C).
    5. Dong, Hongsheng & Wang, Jiaqi & Xie, Zhuoxue & Wang, Bin & Zhang, Lunxiang & Shi, Quan, 2021. "Potential applications based on the formation and dissociation of gas hydrates," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    6. Li, Yao & Liu, Nan & Zhang, Tao & Wang, Binbin & Wang, Yan & Wang, Lanyun & Wei, Jianping, 2020. "Highly microporous nitrogen-doped carbons from anthracite for effective CO2 capture and CO2/CH4 separation," Energy, Elsevier, vol. 211(C).
    7. Lai, Xi & Zhao, Li & Nie, Xianhua & Zhang, Yue & Zhang, Qi, 2023. "Hydrate-based composition separation of R32/R1234yf mixed working fluids applied in composition-adjustable organic Rankine cycle," Energy, Elsevier, vol. 284(C).
    8. Liu, Fa-Ping & Li, Ai-Rong & Wang, Cheng & Ma, Yu-Ling, 2023. "Controlling and tuning CO2 hydrate nucleation and growth by metal-based ionic liquids," Energy, Elsevier, vol. 269(C).
    9. Kou, Xuan & Li, Xiao-Sen & Wang, Yi & Wan, Kun & Chen, Zhao-Yang, 2021. "Pore-scale analysis of relations between seepage characteristics and gas hydrate growth habit in porous sediments," Energy, Elsevier, vol. 218(C).
    10. Foroutan, Shima & Mohsenzade, Hanie & Dashti, Ali & Roosta, Hadi, 2021. "New insights into the evaluation of kinetic hydrate inhibitors and energy consumption in rocking and stirred cells," Energy, Elsevier, vol. 218(C).
    11. Huang, Hong & Fan, Shuanshi & Wang, Yanhong & Lang, Xuemei & Li, Gang, 2023. "Energy and exergy efficiency analysis for biogas De-CO2 with tetra-n-butylammonium bromide hydrates," Energy, Elsevier, vol. 265(C).
    12. Kou, Xuan & Li, Xiao-Sen & Wang, Yi & Liu, Jian-Wu & Chen, Zhao-Yang, 2021. "Effects of gas occurrence pattern on distribution and morphology characteristics of gas hydrates in porous media," Energy, Elsevier, vol. 226(C).
    13. Xiaoya Zang & Na Zhang & Xuebing Zhou & Lihua Wan & Deqing Liang, 2020. "Experimental Investigation of the Hydrate-Based Gas Separation of Synthetic Flue Gas with 5A Zeolite," Energies, MDPI, vol. 13(17), pages 1-12, September.
    14. Xu, Gang & Xu, Chun-Gang & Wang, Min & Cai, Jing & Chen, Zhao-Yang & Li, Xiao-Sen, 2021. "Influence of nickel foam on kinetics and separation efficiency of hydrate-based Carbon dioxide separation," Energy, Elsevier, vol. 231(C).
    15. Ouyang, Qian & Zheng, Junjie & Pandey, Jyoti Shanker & von Solms, Nicolas & Linga, Praveen, 2024. "Coupling amino acid injection and slow depressurization with hydrate swapping exploitation: An effective strategy to enhance in-situ CO2 storage in hydrate-bearing sediment," Applied Energy, Elsevier, vol. 366(C).
    16. Kou, Xuan & Feng, Jing-Chun & Li, Xiao-Sen & Wang, Yi & Chen, Zhao-Yang, 2022. "Memory effect of gas hydrate: Influencing factors of hydrate reformation and dissociation behaviors☆," Applied Energy, Elsevier, vol. 306(PA).
    17. Zhang, Qiang & Zheng, Junjie & Zhang, Baoyong & Linga, Praveen, 2023. "Kinetic evaluation of hydrate-based coalbed methane recovery process promoted by structure II thermodynamic promoters and amino acids," Energy, Elsevier, vol. 274(C).
    18. Zheng Li & Christine C. Holzammer & Andreas S. Braeuer, 2020. "Analysis of the Dissolution of CH 4 /CO 2 -Mixtures into Liquid Water and the Subsequent Hydrate Formation via In Situ Raman Spectroscopy," Energies, MDPI, vol. 13(4), pages 1-17, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhong, Dong-Liang & Wang, Wen-Chun & Zou, Zhen-Lin & Lu, Yi-Yu & Yan, Jin & Ding, Kun, 2018. "Investigation on methane recovery from low-concentration coal mine gas by tetra-n-butyl ammonium chloride semiclathrate hydrate formation," Applied Energy, Elsevier, vol. 227(C), pages 686-693.
    2. Wang, Yiwei & Deng, Ye & Guo, Xuqiang & Sun, Qiang & Liu, Aixian & Zhang, Guangqing & Yue, Gang & Yang, Lanying, 2018. "Experimental and modeling investigation on separation of methane from coal seam gas (CSG) using hydrate formation," Energy, Elsevier, vol. 150(C), pages 377-395.
    3. Wang, Xiaolin & Zhang, Fengyuan & Lipiński, Wojciech, 2020. "Research progress and challenges in hydrate-based carbon dioxide capture applications," Applied Energy, Elsevier, vol. 269(C).
    4. Wang, Yan & Zhong, Dong-Liang & Li, Zheng & Li, Jian-Bo, 2020. "Application of tetra-n-butyl ammonium bromide semi-clathrate hydrate for CO2 capture from unconventional natural gases," Energy, Elsevier, vol. 197(C).
    5. Xia, Zhi-ming & Li, Xiao-sen & Chen, Zhao-yang & Li, Gang & Cai, Jing & Wang, Yi & Yan, Ke-feng & Xu, Chun-gang, 2017. "Hydrate-based acidic gases capture for clean methane with new synergic additives," Applied Energy, Elsevier, vol. 207(C), pages 584-593.
    6. Zheng, Junjie & Zhang, Peng & Linga, Praveen, 2017. "Semiclathrate hydrate process for pre-combustion capture of CO2 at near ambient temperatures," Applied Energy, Elsevier, vol. 194(C), pages 267-278.
    7. Theo, Wai Lip & Lim, Jeng Shiun & Hashim, Haslenda & Mustaffa, Azizul Azri & Ho, Wai Shin, 2016. "Review of pre-combustion capture and ionic liquid in carbon capture and storage," Applied Energy, Elsevier, vol. 183(C), pages 1633-1663.
    8. Cai, Jing & Xu, Chun-Gang & Xia, Zhi-Ming & Chen, Zhao-Yang & Li, Xiao-Sen, 2017. "Hydrate-based methane separation from coal mine methane gas mixture by bubbling using the scale-up equipment," Applied Energy, Elsevier, vol. 204(C), pages 1526-1534.
    9. Yi, Jie & Zhong, Dong-Liang & Yan, Jin & Lu, Yi-Yu, 2019. "Impacts of the surfactant sulfonated lignin on hydrate based CO2 capture from a CO2/CH4 gas mixture," Energy, Elsevier, vol. 171(C), pages 61-68.
    10. Ouyang, Qian & Zheng, Junjie & Pandey, Jyoti Shanker & von Solms, Nicolas & Linga, Praveen, 2024. "Coupling amino acid injection and slow depressurization with hydrate swapping exploitation: An effective strategy to enhance in-situ CO2 storage in hydrate-bearing sediment," Applied Energy, Elsevier, vol. 366(C).
    11. Zhong, Dong-Liang & Wang, Jia-Le & Lu, Yi-Yu & Li, Zheng & Yan, Jin, 2016. "Precombustion CO2 capture using a hybrid process of adsorption and gas hydrate formation," Energy, Elsevier, vol. 102(C), pages 621-629.
    12. Wang, Fei & Fu, Shanfei & Guo, Gang & Jia, Zhen-Zhen & Luo, Sheng-Jun & Guo, Rong-Bo, 2016. "Experimental study on hydrate-based CO2 removal from CH4/CO2 mixture," Energy, Elsevier, vol. 104(C), pages 76-84.
    13. Xie, Yan & Zhu, Yu-Jie & Cheng, Li-Wei & Zheng, Tao & Zhong, Jin-Rong & Xiao, Peng & Sun, Chang-Yu & Chen, Guang-Jin & Feng, Jing-Chun, 2023. "The coexistence of multiple hydrates triggered by varied H2 molecule occupancy during CO2/H2 hydrate dissociation," Energy, Elsevier, vol. 262(PA).
    14. Xia, Zhi-Ming & Li, Xiao-Sen & Chen, Zhao-Yang & Li, Gang & Yan, Ke-Feng & Xu, Chun-Gang & Lv, Qiu-Nan & Cai, Jing, 2016. "Hydrate-based CO2 capture and CH4 purification from simulated biogas with synergic additives based on gas solvent," Applied Energy, Elsevier, vol. 162(C), pages 1153-1159.
    15. Zheng Li & Christine C. Holzammer & Andreas S. Braeuer, 2020. "Analysis of the Dissolution of CH 4 /CO 2 -Mixtures into Liquid Water and the Subsequent Hydrate Formation via In Situ Raman Spectroscopy," Energies, MDPI, vol. 13(4), pages 1-17, February.
    16. Babu, Ponnivalavan & Linga, Praveen & Kumar, Rajnish & Englezos, Peter, 2015. "A review of the hydrate based gas separation (HBGS) process for carbon dioxide pre-combustion capture," Energy, Elsevier, vol. 85(C), pages 261-279.
    17. Wang, Yiwei & Du, Mei & Guo, Xuqiang & Sun, Qiang & Liu, Aixian & Chen, Bo & Chen, Guangjin & Sun, Changyu & Yang, Lanying, 2017. "Experiments and simulations for continuous recovery of methane from coal seam gas (CSG) utilizing hydrate formation," Energy, Elsevier, vol. 129(C), pages 28-41.
    18. Li, Zheng & Zhong, Dong-Liang & Lu, Yi-Yu & Yan, Jin & Zou, Zhen-Lin, 2017. "Preferential enclathration of CO2 into tetra-n-butyl phosphonium bromide semiclathrate hydrate in moderate operating conditions: Application for CO2 capture from shale gas," Applied Energy, Elsevier, vol. 199(C), pages 370-381.
    19. Wang, Pengfei & Chen, Yiqi & Teng, Ying & An, Senyou & Li, Yun & Han, Meng & Yuan, Bao & Shen, Suling & Chen, Bin & Han, Songbai & Zhu, Jinlong & Zhu, Jianbo & Zhao, Yusheng & Xie, Heping, 2024. "A comprehensive review of hydrogen purification using a hydrate-based method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 194(C).
    20. Zhong, Dong-Liang & Li, Zheng & Lu, Yi-Yu & Wang, Jia-Le & Yan, Jin, 2015. "Evaluation of CO2 removal from a CO2+CH4 gas mixture using gas hydrate formation in liquid water and THF solutions," Applied Energy, Elsevier, vol. 158(C), pages 133-141.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:157:y:2018:i:c:p:54-64. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.