IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v252y2022ics0360544222009112.html
   My bibliography  Save this article

The effect of syngas addition on flameless natural gas combustion in a regenerative furnace

Author

Listed:
  • Yepes, Hernando A.
  • Obando, Julián E.
  • Amell, Andrés A.

Abstract

The present work numerically and experimentally studies the mixture of 30% syngas and 70% natural gas (SG-NG), by volume, and compares performance to pure natural gas (NG). The experimental measurements were carried out in a semi-industrial regenerative furnace originally designed for pure natural gas. A 25 kW thermal input and a 1.2 excess air ratio were maintained throughout. Temperatures and species were measured inside the combustion chamber. The effect of the syngas on the reaction zone location was determined by imaging spontaneous chemiluminescence. The effect of preheating was also studied for the SG-NG mixture. CFD modeling was used to analyze the effects on recirculation patterns. SG-NG exhibited an average temperature decrease of 6% compared to NG, due to the greater recirculation and increased CO2 in the flue gases. The species uniformity remained consistent, while the thermal uniformity factor (RTU) decreased by 10.5%, indicating greater uniformity. NOx emissions decreased by almost 50% for the SG-NG mixture. The addition of syngas improved the reactivity and displaced the reaction zone upstream. Without preheating, the recirculation and the reactant dilution decrease, generating a disturbance in the thermal uniformity (RTU increase by 65%) and the reaction zone was displaced downstream.

Suggested Citation

  • Yepes, Hernando A. & Obando, Julián E. & Amell, Andrés A., 2022. "The effect of syngas addition on flameless natural gas combustion in a regenerative furnace," Energy, Elsevier, vol. 252(C).
  • Handle: RePEc:eee:energy:v:252:y:2022:i:c:s0360544222009112
    DOI: 10.1016/j.energy.2022.124008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222009112
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.124008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Khalil, Ahmed E.E. & Gupta, Ashwani K., 2017. "The role of CO2 on oxy-colorless distributed combustion," Applied Energy, Elsevier, vol. 188(C), pages 466-474.
    2. Chinnici, A. & Nathan, G.J. & Dally, B.B., 2018. "Experimental demonstration of the hybrid solar receiver combustor," Applied Energy, Elsevier, vol. 224(C), pages 426-437.
    3. Sánchez, Mario & Cadavid, Francisco & Amell, Andrés, 2013. "Experimental evaluation of a 20kW oxygen enhanced self-regenerative burner operated in flameless combustion mode," Applied Energy, Elsevier, vol. 111(C), pages 240-246.
    4. Chiari, Luca & Zecca, Antonio, 2011. "Constraints of fossil fuels depletion on global warming projections," Energy Policy, Elsevier, vol. 39(9), pages 5026-5034, September.
    5. Cheong, Kin-Pang & Wang, Guochang & Wang, Bo & Zhu, Rong & Ren, Wei & Mi, Jianchun, 2019. "Stability and emission characteristics of nonpremixed MILD combustion from a parallel-jet burner in a cylindrical furnace," Energy, Elsevier, vol. 170(C), pages 1181-1190.
    6. Wang, Feifei & Li, Pengfei & Mei, Zhenfeng & Zhang, Jianpeng & Mi, Jianchun, 2014. "Combustion of CH4/O2/N2 in a well stirred reactor," Energy, Elsevier, vol. 72(C), pages 242-253.
    7. Cho, E.-S. & Shin, D. & Lu, J. & de Jong, W. & Roekaerts, D.J.E.M., 2013. "Configuration effects of natural gas fired multi-pair regenerative burners in a flameless oxidation furnace on efficiency and emissions," Applied Energy, Elsevier, vol. 107(C), pages 25-32.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Orati, Edson & Veríssimo, Anton S. & Rocha, Ana Maura A. & Costa, Fernando S. & Carvalho, João A., 2022. "Experimental investigation of flameless combustion of biodiesel," Energy, Elsevier, vol. 255(C).
    2. Fordoei, Esmaeil Ebrahimi & Boyaghchi, Fateme Ahmadi, 2022. "Influence of wall thermal conditions on the ignition, flame structure, and temperature behaviors in air-fuel, oxygen-enhanced, and oxy-fuel combustion under the MILD and high-temperature regimes," Energy, Elsevier, vol. 255(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Zhiyi & Ferrarotti, Marco & Cuoci, Alberto & Parente, Alessandro, 2018. "Finite-rate chemistry modelling of non-conventional combustion regimes using a Partially-Stirred Reactor closure: Combustion model formulation and implementation details," Applied Energy, Elsevier, vol. 225(C), pages 637-655.
    2. Fordoei, Esmaeil Ebrahimi & Boyaghchi, Fateme Ahmadi, 2022. "Influence of wall thermal conditions on the ignition, flame structure, and temperature behaviors in air-fuel, oxygen-enhanced, and oxy-fuel combustion under the MILD and high-temperature regimes," Energy, Elsevier, vol. 255(C).
    3. Cheong, Kin-Pang & Wang, Guochang & Si, Jicang & Mi, Jianchun, 2021. "Nonpremixed MILD combustion in a laboratory-scale cylindrical furnace: Occurrence and identification," Energy, Elsevier, vol. 216(C).
    4. Sorrentino, Giancarlo & Sabia, Pino & Bozza, Pio & Ragucci, Raffaele & de Joannon, Mara, 2017. "Impact of external operating parameters on the performance of a cyclonic burner with high level of internal recirculation under MILD combustion conditions," Energy, Elsevier, vol. 137(C), pages 1167-1174.
    5. Tu, Yaojie & Xu, Mingchen & Zhou, Dezhi & Wang, Qingxiang & Yang, Wenming & Liu, Hao, 2019. "CFD and kinetic modelling study of methane MILD combustion in O2/N2, O2/CO2 and O2/H2O atmospheres," Applied Energy, Elsevier, vol. 240(C), pages 1003-1013.
    6. Li, Jun & Huang, Hongyu & Kobayashi, Noriyuki & He, Zhaohong & Osaka, Yugo & Zeng, Tao, 2015. "Numerical study on effect of oxygen content in combustion air on ammonia combustion," Energy, Elsevier, vol. 93(P2), pages 2053-2068.
    7. He, Yizhuo & Zou, Chun & Song, Yu & Liu, Yang & Zheng, Chuguang, 2016. "Numerical study of characteristics on NO formation in methane MILD combustion with simultaneously hot and diluted oxidant and fuel (HDO/HDF)," Energy, Elsevier, vol. 112(C), pages 1024-1035.
    8. Neeraj Sharma & Rajat Agrawal, 2017. "Locating a Wind Energy Project: A Case of a Leading Oil and Gas Producer in India," Vision, , vol. 21(2), pages 172-194, June.
    9. Ali Javaid & Umer Javaid & Muhammad Sajid & Muhammad Rashid & Emad Uddin & Yasar Ayaz & Adeel Waqas, 2022. "Forecasting Hydrogen Production from Wind Energy in a Suburban Environment Using Machine Learning," Energies, MDPI, vol. 15(23), pages 1-13, November.
    10. Xie, Kai & Cui, Yunjing & Qiu, Xingqi & Wang, Jianxin, 2020. "Experimental study on flame characteristics and air entrainment of diesel horizontal spray burners at two different atmospheric pressures," Energy, Elsevier, vol. 211(C).
    11. Höök, Mikael & Tang, Xu, 2013. "Depletion of fossil fuels and anthropogenic climate change—A review," Energy Policy, Elsevier, vol. 52(C), pages 797-809.
    12. Fazril Ideris & Mohd Faiz Muaz Ahmad Zamri & Abd Halim Shamsuddin & Saifuddin Nomanbhay & Fitranto Kusumo & Islam Md Rizwanul Fattah & Teuku Meurah Indra Mahlia, 2022. "Progress on Conventional and Advanced Techniques of In Situ Transesterification of Microalgae Lipids for Biodiesel Production," Energies, MDPI, vol. 15(19), pages 1-32, September.
    13. Iñigo Aramendia & Unai Fernandez-Gamiz & Adrian Martinez-San-Vicente & Ekaitz Zulueta & Jose Manuel Lopez-Guede, 2020. "Vanadium Redox Flow Batteries: A Review Oriented to Fluid-Dynamic Optimization," Energies, MDPI, vol. 14(1), pages 1-20, December.
    14. Chen, Jinli & Xiao, Gang & Xu, Haoran & Zhou, Xin & Yang, Jiamin & Ni, Mingjiang & Cen, Kefa, 2022. "Experiment and dynamic simulation of a solar tower collector system for power generation," Renewable Energy, Elsevier, vol. 196(C), pages 946-958.
    15. Tian, Junjian & Liu, Xiang & Shi, Hao & Yao, Yurou & Ni, Zhanshi & Meng, Kengsheng & Hu, Peng & Lin, Qizhao, 2024. "Experimental study on MILD combustion of methane under non-preheated condition in a swirl combustion furnace," Applied Energy, Elsevier, vol. 363(C).
    16. Hasan Mahmud & Joyashree Roy, 2021. "Barriers to Overcome in Accelerating Renewable Energy Penetration in Bangladesh," Sustainability, MDPI, vol. 13(14), pages 1-28, July.
    17. Han, Youhua & Liu, Yang & Lu, Shixiang & Basalike, Pie & Zhang, Jili, 2021. "Electrical performance and power prediction of a roll-bond photovoltaic thermal array under dewing and frosting conditions," Energy, Elsevier, vol. 237(C).
    18. Du, Zhengyang & Dai, Zhenxue & Yang, Zhijie & Zhan, Chuanjun & Chen, Wei & Cao, Mingxu & Thanh, Hung Vo & Soltanian, Mohamad Reza, 2024. "Exploring hydrogen geologic storage in China for future energy: Opportunities and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 196(C).
    19. Kim, Tae-Woo & Lee, Eun-Han & Byun, Segi & Seo, Doo-Won & Hwang, Hyo-Jung & Yoon, Hyung-Chul & Kim, Hansung & Ryi, Shin-Kun, 2022. "Highly selective Pd composite membrane on porous metal support for high-purity hydrogen production through effective ammonia decomposition," Energy, Elsevier, vol. 260(C).
    20. Kuang, Yucheng & He, Boshu & Wang, Chaojun & Tong, Wenxiao & He, Di, 2021. "Numerical analyses of MILD and conventional combustions with the Eddy Dissipation Concept (EDC)," Energy, Elsevier, vol. 237(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:252:y:2022:i:c:s0360544222009112. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.