IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v107y2013icp25-32.html
   My bibliography  Save this article

Configuration effects of natural gas fired multi-pair regenerative burners in a flameless oxidation furnace on efficiency and emissions

Author

Listed:
  • Cho, E.-S.
  • Shin, D.
  • Lu, J.
  • de Jong, W.
  • Roekaerts, D.J.E.M.

Abstract

We report the characteristics of heat transfer and emissions in natural gas fired flameless oxidation conditions created using multiple semi-industrial regenerative burners. Burner positions and firing modes (parallel and staggered) are varied, and their effects on efficiency, emissions (NO, CO) and temperature uniformity are studied. Also the excess air ratio and the cycle time have been varied. The operation uses two burner pairs together to provide 200kWth giving a volumetric heat release closely resembling real industrial operating conditions (48MW/m3). The parallel mode operation shows better results concerning low emission of CO and NO, and uniform temperature distribution in the furnace. On the other hand, the staggered mode operation showed a comparatively low performance due to a developed unsymmetrical flow pattern in the furnace. Single digit NO emission was measured for the parallel mode with low CO concentration due to low and uniform temperature. CO concentration is strongly dependent on the burner cycle time because the switching of burners generates periods of unstable and non-uniform flow pattern and also temperature distribution temporarily. The numerical simulation with skeletal reaction showed typical reaction characteristics of flameless oxidation, which is a slow and uniform reaction progress in the furnace. Meanwhile, the reaction model needs to improve its accuracy because the reaction speed appears to be slower than the experiment, and the simulation of a case showed extinguished reaction. The comparable simulation results also showed an order higher CO emission and an order lower NO emission, which is assumed to be related with low reaction kinetics.

Suggested Citation

  • Cho, E.-S. & Shin, D. & Lu, J. & de Jong, W. & Roekaerts, D.J.E.M., 2013. "Configuration effects of natural gas fired multi-pair regenerative burners in a flameless oxidation furnace on efficiency and emissions," Applied Energy, Elsevier, vol. 107(C), pages 25-32.
  • Handle: RePEc:eee:appene:v:107:y:2013:i:c:p:25-32
    DOI: 10.1016/j.apenergy.2013.01.035
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261913000445
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2013.01.035?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Arghode, Vaibhav K. & Gupta, Ashwani K., 2011. "Development of high intensity CDC combustor for gas turbine engines," Applied Energy, Elsevier, vol. 88(3), pages 963-973, March.
    2. Cho, E.-S. & Danon, B. & de Jong, W. & Roekaerts, D.J.E.M., 2011. "Behavior of a 300kWth regenerative multi-burner flameless oxidation furnace," Applied Energy, Elsevier, vol. 88(12), pages 4952-4959.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kruse, Stephan & Kerschgens, Bruno & Berger, Lukas & Varea, Emilien & Pitsch, Heinz, 2015. "Experimental and numerical study of MILD combustion for gas turbine applications," Applied Energy, Elsevier, vol. 148(C), pages 456-465.
    2. Tsuboi, Yosuke & Ito, Shintaro & Takafuji, Makoto & Ohara, Hiroaki & Fujimori, Toshiro, 2017. "Development of a regenerative reformer for tar-free syngas production in a steam gasification process," Applied Energy, Elsevier, vol. 185(P2), pages 1217-1224.
    3. Sorrentino, Giancarlo & Sabia, Pino & Bozza, Pio & Ragucci, Raffaele & de Joannon, Mara, 2017. "Impact of external operating parameters on the performance of a cyclonic burner with high level of internal recirculation under MILD combustion conditions," Energy, Elsevier, vol. 137(C), pages 1167-1174.
    4. Li, Zhiyi & Ferrarotti, Marco & Cuoci, Alberto & Parente, Alessandro, 2018. "Finite-rate chemistry modelling of non-conventional combustion regimes using a Partially-Stirred Reactor closure: Combustion model formulation and implementation details," Applied Energy, Elsevier, vol. 225(C), pages 637-655.
    5. Yepes, Hernando A. & Obando, Julián E. & Amell, Andrés A., 2022. "The effect of syngas addition on flameless natural gas combustion in a regenerative furnace," Energy, Elsevier, vol. 252(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hosseini, Seyed Ehsan & Wahid, Mazlan Abdul, 2014. "Development of biogas combustion in combined heat and power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 868-875.
    2. Cho, E.-S. & Danon, B. & de Jong, W. & Roekaerts, D.J.E.M., 2011. "Behavior of a 300kWth regenerative multi-burner flameless oxidation furnace," Applied Energy, Elsevier, vol. 88(12), pages 4952-4959.
    3. Zhao, Yuling & He, Xiaomin & Li, Mingyu, 2020. "Effect of mainstream forced entrainment on the combustion performance of a gas turbine combustor," Applied Energy, Elsevier, vol. 279(C).
    4. Khalil, Ahmed E.E. & Arghode, Vaibhav K. & Gupta, Ashwani K. & Lee, Sang Chun, 2012. "Low calorific value fuelled distributed combustion with swirl for gas turbine applications," Applied Energy, Elsevier, vol. 98(C), pages 69-78.
    5. Xing, Fei & Kumar, Arvind & Huang, Yue & Chan, Shining & Ruan, Can & Gu, Sai & Fan, Xiaolei, 2017. "Flameless combustion with liquid fuel: A review focusing on fundamentals and gas turbine application," Applied Energy, Elsevier, vol. 193(C), pages 28-51.
    6. Arghode, Vaibhav K. & Khalil, Ahmed E.E. & Gupta, Ashwani K., 2012. "Fuel dilution and liquid fuel operational effects on ultra-high thermal intensity distributed combustor," Applied Energy, Elsevier, vol. 95(C), pages 132-138.
    7. Sánchez, Mario & Cadavid, Francisco & Amell, Andrés, 2013. "Experimental evaluation of a 20kW oxygen enhanced self-regenerative burner operated in flameless combustion mode," Applied Energy, Elsevier, vol. 111(C), pages 240-246.
    8. Marín, Pablo & Díez, Fernando V. & Ordóñez, Salvador, 2014. "A new method for controlling the ignition state of a regenerative combustor using a heat storage device," Applied Energy, Elsevier, vol. 116(C), pages 322-332.
    9. Tyliszczak, Artur & Boguslawski, Andrzej & Nowak, Dariusz, 2016. "Numerical simulations of combustion process in a gas turbine with a single and multi-point fuel injection system," Applied Energy, Elsevier, vol. 174(C), pages 153-165.
    10. Zeinivand, Hamed & Bazdidi-Tehrani, Farzad, 2012. "Influence of stabilizer jets on combustion characteristics and NOx emission in a jet-stabilized combustor," Applied Energy, Elsevier, vol. 92(C), pages 348-360.
    11. Xiao, Heng & Qiu, Kuanrong & Gou, Xiaolong & Ou, Qiang, 2013. "A flameless catalytic combustion-based thermoelectric generator for powering electronic instruments on gas pipelines," Applied Energy, Elsevier, vol. 112(C), pages 1161-1165.
    12. Kuban, Lukasz & Stempka, Jakub & Tyliszczak, Artur, 2019. "A 3D-CFD study of a γ-type Stirling engine," Energy, Elsevier, vol. 169(C), pages 142-159.
    13. Li, Zhiyi & Ferrarotti, Marco & Cuoci, Alberto & Parente, Alessandro, 2018. "Finite-rate chemistry modelling of non-conventional combustion regimes using a Partially-Stirred Reactor closure: Combustion model formulation and implementation details," Applied Energy, Elsevier, vol. 225(C), pages 637-655.
    14. Gupta, Shreshtha Kumar & Kushwaha, Abhijit Kumar & Arghode, Vaibhav Kumar, 2020. "Investigation of peripheral vortex reverse flow (PVRF) combustor for gas turbine engines," Energy, Elsevier, vol. 193(C).
    15. Sorrentino, Giancarlo & Sabia, Pino & Bozza, Pio & Ragucci, Raffaele & de Joannon, Mara, 2017. "Impact of external operating parameters on the performance of a cyclonic burner with high level of internal recirculation under MILD combustion conditions," Energy, Elsevier, vol. 137(C), pages 1167-1174.
    16. Kruse, Stephan & Kerschgens, Bruno & Berger, Lukas & Varea, Emilien & Pitsch, Heinz, 2015. "Experimental and numerical study of MILD combustion for gas turbine applications," Applied Energy, Elsevier, vol. 148(C), pages 456-465.
    17. Sharma, Saurabh & Singh, Paramvir & Gupta, Ashish & Chowdhury, Arindrajit & Khandelwal, Bhupendra & Kumar, Sudarshan, 2020. "Distributed combustion mode in a can-type gas turbine combustor – A numerical and experimental study," Applied Energy, Elsevier, vol. 277(C).
    18. Karampinis, E. & Nikolopoulos, N. & Nikolopoulos, A. & Grammelis, P. & Kakaras, E., 2012. "Numerical investigation Greek lignite/cardoon co-firing in a tangentially fired furnace," Applied Energy, Elsevier, vol. 97(C), pages 514-524.
    19. Arghode, Vaibhav K. & Gupta, Ashwani K., 2013. "Role of thermal intensity on operational characteristics of ultra-low emission colorless distributed combustion," Applied Energy, Elsevier, vol. 111(C), pages 930-956.
    20. Arghode, Vaibhav K. & Gupta, Ashwani K. & Bryden, Kenneth M., 2012. "High intensity colorless distributed combustion for ultra low emissions and enhanced performance," Applied Energy, Elsevier, vol. 92(C), pages 822-830.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:107:y:2013:i:c:p:25-32. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.