Forecasting Hydrogen Production from Wind Energy in a Suburban Environment Using Machine Learning
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Trop, P. & Goricanec, D., 2016. "Comparisons between energy carriers' productions for exploiting renewable energy sources," Energy, Elsevier, vol. 108(C), pages 155-161.
- Mahsa Dehghan Manshadi & Majid Ghassemi & Seyed Milad Mousavi & Amir H. Mosavi & Levente Kovacs, 2021. "Predicting the Parameters of Vortex Bladeless Wind Turbine Using Deep Learning Method of Long Short-Term Memory," Energies, MDPI, vol. 14(16), pages 1-17, August.
- Shuto Tsuchida & Hirofumi Nonaka & Noboru Yamada, 2022. "Deep Reinforcement Learning for the Optimal Angle Control of Tracking Bifacial Photovoltaic Systems," Energies, MDPI, vol. 15(21), pages 1-14, October.
- Messner, Jakob W. & Pinson, Pierre, 2019. "Online adaptive lasso estimation in vector autoregressive models for high dimensional wind power forecasting," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1485-1498.
- Yang, Yingkui & Solgaard, Hans Stubbe & Haider, Wolfgang, 2016. "Wind, hydro or mixed renewable energy source: Preference for electricity products when the share of renewable energy increases," Energy Policy, Elsevier, vol. 97(C), pages 521-531.
- Ahmad Alzahrani & Senthil Kumar Ramu & Gunapriya Devarajan & Indragandhi Vairavasundaram & Subramaniyaswamy Vairavasundaram, 2022. "A Review on Hydrogen-Based Hybrid Microgrid System: Topologies for Hydrogen Energy Storage, Integration, and Energy Management with Solar and Wind Energy," Energies, MDPI, vol. 15(21), pages 1-32, October.
- Rafiq Asghar & Zahid Ullah & Babar Azeem & Sheraz Aslam & Muhammad Harris Hashmi & Ehtsham Rasool & Bilawal Shaker & Muhammad Junaid Anwar & Kainat Mustafa, 2022. "Wind Energy Potential in Pakistan: A Feasibility Study in Sindh Province," Energies, MDPI, vol. 15(22), pages 1-23, November.
- Chiari, Luca & Zecca, Antonio, 2011. "Constraints of fossil fuels depletion on global warming projections," Energy Policy, Elsevier, vol. 39(9), pages 5026-5034, September.
- Qureshy, Ali M.M.I. & Dincer, Ibrahim, 2020. "Energy and exergy analyses of an integrated renewable energy system for hydrogen production," Energy, Elsevier, vol. 204(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Abdoulkader Ibrahim Idriss & Ramadan Ali Ahmed & Hamda Abdi Atteyeh & Omar Abdoulkader Mohamed & Haitham Saad Mohamed Ramadan, 2023. "Techno-Economic Potential of Wind-Based Green Hydrogen Production in Djibouti: Literature Review and Case Studies," Energies, MDPI, vol. 16(16), pages 1-19, August.
- Liu, Ling & Wang, Jujie & Li, Jianping & Wei, Lu, 2023. "An online transfer learning model for wind turbine power prediction based on spatial feature construction and system-wide update," Applied Energy, Elsevier, vol. 340(C).
- Xinhao Liang & Feihu Hu & Xin Li & Lin Zhang & Hui Cao & Haiming Li, 2023. "Spatio-Temporal Wind Speed Prediction Based on Improved Residual Shrinkage Network," Sustainability, MDPI, vol. 15(7), pages 1-19, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Billé, Anna Gloria & Gianfreda, Angelica & Del Grosso, Filippo & Ravazzolo, Francesco, 2023.
"Forecasting electricity prices with expert, linear, and nonlinear models,"
International Journal of Forecasting, Elsevier, vol. 39(2), pages 570-586.
- Anna Gloria Billé & Angelica Gianfreda & Filippo Del Grosso & Francesco Ravazzolo, 2021. "Forecasting Electricity Prices with Expert, Linear and Non-Linear Models," Working Paper series 21-20, Rimini Centre for Economic Analysis.
- Jonathan Berrisch & Florian Ziel, 2023. "Multivariate Probabilistic CRPS Learning with an Application to Day-Ahead Electricity Prices," Papers 2303.10019, arXiv.org, revised Feb 2024.
- Mahsa Dehghan Manshadi & Milad Mousavi & M. Soltani & Amir Mosavi & Levente Kovacs, 2022. "Deep Learning for Modeling an Offshore Hybrid Wind–Wave Energy System," Energies, MDPI, vol. 15(24), pages 1-16, December.
- Rafiq Asghar & Francesco Riganti Fulginei & Hamid Wadood & Sarmad Saeed, 2023. "A Review of Load Frequency Control Schemes Deployed for Wind-Integrated Power Systems," Sustainability, MDPI, vol. 15(10), pages 1-29, May.
- repec:aud:audfin:v:21:y:2019:i:50:p:75 is not listed on IDEAS
- Pierre Pinson & Liyang Han & Jalal Kazempour, 2022. "Regression markets and application to energy forecasting," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(3), pages 533-573, October.
- Bin Yang & Xin Zhu & Boan Wei & Minzhang Liu & Yifan Li & Zhihan Lv & Faming Wang, 2023. "Computer Vision and Machine Learning Methods for Heat Transfer and Fluid Flow in Complex Structural Microchannels: A Review," Energies, MDPI, vol. 16(3), pages 1-24, February.
- Iwona Bąk & Anna Spoz & Magdalena Zioło & Marek Dylewski, 2021. "Dynamic Analysis of the Similarity of Objects in Research on the Use of Renewable Energy Resources in European Union Countries," Energies, MDPI, vol. 14(13), pages 1-24, July.
- Wen, Honglin & Pinson, Pierre & Gu, Jie & Jin, Zhijian, 2024. "Wind energy forecasting with missing values within a fully conditional specification framework," International Journal of Forecasting, Elsevier, vol. 40(1), pages 77-95.
- Wei Fang & Cheng Yang & Dengfeng Liu & Qiang Huang & Bo Ming & Long Cheng & Lu Wang & Gang Feng & Jianan Shang, 2023. "Assessment of Wind and Solar Power Potential and Their Temporal Complementarity in China’s Northwestern Provinces: Insights from ERA5 Reanalysis," Energies, MDPI, vol. 16(20), pages 1-23, October.
- Sommer, Benedikt & Pinson, Pierre & Messner, Jakob W. & Obst, David, 2021. "Online distributed learning in wind power forecasting," International Journal of Forecasting, Elsevier, vol. 37(1), pages 205-223.
- Byun, Manhee & Kim, Heehyang & Lee, Hyunjun & Lim, Dongjun & Lim, Hankwon, 2022. "Conceptual design for methanol steam reforming in serial packed-bed reactors and membrane filters: Economic and environmental perspectives," Energy, Elsevier, vol. 241(C).
- Khairul Eahsun Fahim & Liyanage C. De Silva & Fayaz Hussain & Sk. A. Shezan & Hayati Yassin, 2023. "An Evaluation of ASEAN Renewable Energy Path to Carbon Neutrality," Sustainability, MDPI, vol. 15(8), pages 1-27, April.
- Iqbal Muhammad-Jawad & Abdul Samad Abdul-Rahim, 2020. "Economic Valuation of Green Electricity Sources in Pakistan," Business and Economic Research, Macrothink Institute, vol. 10(3), pages 47-64, September.
- Camehl, Annika, 2023. "Penalized estimation of panel vector autoregressive models: A panel LASSO approach," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1185-1204.
- Neeraj Sharma & Rajat Agrawal, 2017. "Locating a Wind Energy Project: A Case of a Leading Oil and Gas Producer in India," Vision, , vol. 21(2), pages 172-194, June.
- Poruschi, Lavinia & Ambrey, Christopher L., 2018. "Densification, what does it mean for fuel poverty and energy justice? An empirical analysis," Energy Policy, Elsevier, vol. 117(C), pages 208-217.
- Halder, P.K. & Paul, N. & Joardder, M.U.H. & Sarker, M., 2015. "Energy scarcity and potential of renewable energy in Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1636-1649.
- Aniket R. Khade & Vijaya D. Damodara & Daniel H. Chen, 2023. "Reduced Mechanism for Combustion of Ammonia and Natural Gas Mixtures," Clean Technol., MDPI, vol. 5(2), pages 1-13, April.
- Kai Xu & Youguang Guo & Gang Lei & Jianguo Zhu, 2023. "A Review of Flywheel Energy Storage System Technologies," Energies, MDPI, vol. 16(18), pages 1-32, September.
- Hu, Bin & He, Guangjian & Chang, Fulu & Yang, Han & Cao, Xianwu & Yin, Xiaochun, 2022. "Low filler and highly conductive composite bipolar plates with synergistic segregated structure for enhanced proton exchange membrane fuel cell performance," Energy, Elsevier, vol. 251(C).
More about this item
Keywords
renewable energy; LSTM; forecast; artificial intelligence; machine learning; Islamabad;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:23:p:8901-:d:983461. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.