IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v252y2022ics0360544222009057.html
   My bibliography  Save this article

Leveraging heat accumulation of district heating network to improve performances of integrated energy system under source-load uncertainties

Author

Listed:
  • Wang, Jiangjiang
  • Huo, Shuojie
  • Yan, Rujing
  • Cui, Zhiheng

Abstract

The multiple uncertainties in renewable energy and loads and the thermoelectric coupling characteristic of the integrated energy system (IES) restrict the accommodation of renewable energy. The IES contains massive pipelines in its district heating network, which signifies the heat storage potential. This paper incorporates the dynamic performance of the district heating network into the multi-scenario optimization model to improve IES's operational performance. Herein, the graph theory and Kirchhoff law are employed to construct the dynamic model of district heating network from the single pipeline and network viewpoints, which characterizes the thermal accumulation performance. The stochastic scenarios are generated by combining Latin hypercube sampling for the initial scenarios and scenario curtailment 0–1 algorithm based on Wasserstein probability distance for the curtailment scenarios to capture the uncertainties. Then, a stochastic multi-scenario optimization method is proposed, which is implemented into a case study to analyze the influences of critical parameters and the performance improvement resulted from the network thermal accumulation. The results show that the scenario curtailment 0–1 algorithm can obtain stable and repeatable scenarios. Considering the heat accumulation characteristics of the district heating network can improve the economic performance by 2.41% and wind energy accommodation by 5.51%.

Suggested Citation

  • Wang, Jiangjiang & Huo, Shuojie & Yan, Rujing & Cui, Zhiheng, 2022. "Leveraging heat accumulation of district heating network to improve performances of integrated energy system under source-load uncertainties," Energy, Elsevier, vol. 252(C).
  • Handle: RePEc:eee:energy:v:252:y:2022:i:c:s0360544222009057
    DOI: 10.1016/j.energy.2022.124002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222009057
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.124002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Jun & Su, Changqi, 2021. "Robust optimization of microgrid based on renewable distributed power generation and load demand uncertainty," Energy, Elsevier, vol. 223(C).
    2. Jónsson, Tryggvi & Pinson, Pierre & Madsen, Henrik, 2010. "On the market impact of wind energy forecasts," Energy Economics, Elsevier, vol. 32(2), pages 313-320, March.
    3. Mora, Esteve Borràs & Spelling, James & van der Weijde, Adriaan H. & Pavageau, Ellen-Mary, 2019. "The effects of mean wind speed uncertainty on project finance debt sizing for offshore wind farms," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    4. Wang, Yongli & Qi, Chengyuan & Dong, Huanran & Wang, Shuo & Wang, Xiaohai & Zeng, Ming & Zhu, Jinrong, 2020. "Optimal design of integrated energy system considering different battery operation strategy," Energy, Elsevier, vol. 212(C).
    5. Cong, Di & Liang, Lingling & Jing, Shaoxing & Han, Yongming & Geng, Zhiqiang & Chu, Chong, 2021. "Energy supply efficiency evaluation of integrated energy systems using novel SBM-DEA integrating Monte Carlo," Energy, Elsevier, vol. 231(C).
    6. Li, Guoqing & Zhang, Rufeng & Jiang, Tao & Chen, Houhe & Bai, Linquan & Cui, Hantao & Li, Xiaojing, 2017. "Optimal dispatch strategy for integrated energy systems with CCHP and wind power," Applied Energy, Elsevier, vol. 192(C), pages 408-419.
    7. Jiang, Yibo & Xu, Jian & Sun, Yuanzhang & Wei, Congying & Wang, Jing & Liao, Siyang & Ke, Deping & Li, Xiong & Yang, Jun & Peng, Xiaotao, 2018. "Coordinated operation of gas-electricity integrated distribution system with multi-CCHP and distributed renewable energy sources," Applied Energy, Elsevier, vol. 211(C), pages 237-248.
    8. Rongxiang Yuan & Jun Ye & Jiazhi Lei & Timing Li, 2016. "Integrated Combined Heat and Power System Dispatch Considering Electrical and Thermal Energy Storage," Energies, MDPI, vol. 9(6), pages 1-17, June.
    9. Gu, Wei & Wang, Jun & Lu, Shuai & Luo, Zhao & Wu, Chenyu, 2017. "Optimal operation for integrated energy system considering thermal inertia of district heating network and buildings," Applied Energy, Elsevier, vol. 199(C), pages 234-246.
    10. Chen, Yuwei & Guo, Qinglai & Sun, Hongbin & Li, Zhengshuo & Pan, Zhaoguang & Wu, Wenchuan, 2019. "A water mass method and its application to integrated heat and electricity dispatch considering thermal inertias," Energy, Elsevier, vol. 181(C), pages 840-852.
    11. Kim, Junyung & Shah, Asad Ullah Amin & Kang, Hyun Gook, 2020. "Dynamic risk assessment with bayesian network and clustering analysis," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    12. Jafarzadeh Ghoushchi, Saeid & Manjili, Sobhan & Mardani, Abbas & Saraji, Mahyar Kamali, 2021. "An extended new approach for forecasting short-term wind power using modified fuzzy wavelet neural network: A case study in wind power plant," Energy, Elsevier, vol. 223(C).
    13. Kim, Hansung & Cheon, Hyungkyu & Ahn, Young-Hwan & Choi, Dong Gu, 2019. "Uncertainty quantification and scenario generation of future solar photovoltaic price for use in energy system models," Energy, Elsevier, vol. 168(C), pages 370-379.
    14. Perera, A.T.D. & Wickremasinghe, D.M.I.J. & Mahindarathna, D.V.S. & Attalage, R.A. & Perera, K.K.C.K. & Bartholameuz, E.M., 2012. "Sensitivity of internal combustion generator capacity in standalone hybrid energy systems," Energy, Elsevier, vol. 39(1), pages 403-411.
    15. Hong, Jong Ho & Kim, Jitae & Son, Wonik & Shin, Heeyoung & Kim, Nahyun & Lee, Woong Ki & Kim, Jintae, 2019. "Long-term energy strategy scenarios for South Korea: Transition to a sustainable energy system," Energy Policy, Elsevier, vol. 127(C), pages 425-437.
    16. Delangle, Axelle & Lambert, Romain S.C. & Shah, Nilay & Acha, Salvador & Markides, Christos N., 2017. "Modelling and optimising the marginal expansion of an existing district heating network," Energy, Elsevier, vol. 140(P1), pages 209-223.
    17. Zhang, Zhaoyan & Wang, Peiguang & Jiang, Ping & Liu, Zhiheng & Fu, Lei, 2022. "Energy management of ultra-short-term optimal scheduling of integrated energy system considering the characteristics of heating network," Energy, Elsevier, vol. 240(C).
    18. Alrashidi, Musaed & Rahman, Saifur & Pipattanasomporn, Manisa, 2020. "Metaheuristic optimization algorithms to estimate statistical distribution parameters for characterizing wind speeds," Renewable Energy, Elsevier, vol. 149(C), pages 664-681.
    19. Yang, Yiping & Huang, Yulei & Jiang, Peixue & Zhu, Yinhai, 2020. "Multi-objective optimization of combined cooling, heating, and power systems with supercritical CO2 recompression Brayton cycle," Applied Energy, Elsevier, vol. 271(C).
    20. Li, Jinghua & Zhou, Jiasheng & Chen, Bo, 2020. "Review of wind power scenario generation methods for optimal operation of renewable energy systems," Applied Energy, Elsevier, vol. 280(C).
    21. Mei, Fei & Zhang, Jiatang & Lu, Jixiang & Lu, Jinjun & Jiang, Yuhan & Gu, Jiaqi & Yu, Kun & Gan, Lei, 2021. "Stochastic optimal operation model for a distributed integrated energy system based on multiple-scenario simulations," Energy, Elsevier, vol. 219(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shi, Yunhong & Wang, Honglei & Li, Chengjiang & Negnevitsky, Michael & Wang, Xiaolin, 2024. "Stochastic optimization of system configurations and operation of hybrid cascade hydro-wind-photovoltaic with battery for uncertain medium- and long-term load growth," Applied Energy, Elsevier, vol. 364(C).
    2. Jakubek, Dariusz & Ocłoń, Paweł & Nowak-Ocłoń, Marzena & Sułowicz, Maciej & Varbanov, Petar Sabev & Klemeš, Jiří Jaromír, 2023. "Mathematical modelling and model validation of the heat losses in district heating networks," Energy, Elsevier, vol. 267(C).
    3. Ma, Yuze & Han, Xu & Zhang, Ting & Li, Ang & Song, Zhicheng & Li, Tao & Wang, Yongli, 2024. "Research on station-network planning of electricity-thermal -cooling regional integrated energy system considering multiple-load clusters and network costs," Energy, Elsevier, vol. 297(C).
    4. Hiris, Daniel P. & Pop, Octavian G. & Dobrovicescu, Alexandru & Dudescu, Mircea C. & Balan, Mugur C., 2023. "Modelling of solar assisted district heating system with seasonal storage tank by two mathematical methods and with two climatic data as input," Energy, Elsevier, vol. 284(C).
    5. Huang, Shangjiu & Lu, Hao & Chen, Maozhi & Zhao, Wenjun, 2023. "Integrated energy system scheduling considering the correlation of uncertainties," Energy, Elsevier, vol. 283(C).
    6. Bogdanovics, Raimonds & Zemitis, Jurgis & Zajacs, Aleksandrs & Borodinecs, Anatolijs, 2024. "Small-scale district heating system as heat storage for decentralized solar thermal collectors during non-heating period," Energy, Elsevier, vol. 298(C).
    7. Aidong Zeng & Jiawei Wang & Yaheng Wan, 2023. "Coordinated Optimal Dispatch of Electricity and Heat Integrated Energy Systems Based on Fictitious Node Method," Energies, MDPI, vol. 16(18), pages 1-24, September.
    8. Morales Sandoval, Daniel A. & Saikia, Pranaynil & De la Cruz-Loredo, Ivan & Zhou, Yue & Ugalde-Loo, Carlos E. & Bastida, Héctor & Abeysekera, Muditha, 2023. "A framework for the assessment of optimal and cost-effective energy decarbonisation pathways of a UK-based healthcare facility11The short version of the paper was presented at ICAE2022, Bochum, German," Applied Energy, Elsevier, vol. 352(C).
    9. Li, Yuxuan & Zhang, Junli & Wu, Xiao & Shen, Jiong & Maréchal, François, 2023. "Stochastic-robust planning optimization method based on tracking-economy extreme scenario tradeoff for CCHP multi-energy system," Energy, Elsevier, vol. 283(C).
    10. Jiawei Wang & Aidong Zeng & Yaheng Wan, 2023. "Multi-Time-Scale Optimal Scheduling of Integrated Energy System Considering Transmission Delay and Heat Storage of Heating Network," Sustainability, MDPI, vol. 15(19), pages 1-26, September.
    11. Yan, Yixian & Huang, Chang & Guan, Junquan & Zhang, Qi & Cai, Yang & Wang, Weiliang, 2024. "Stochastic optimization of solar-based distributed energy system: An error-based scenario with a day-ahead and real-time dynamic scheduling approach," Applied Energy, Elsevier, vol. 363(C).
    12. Yang, Weijia & Huang, Yuping & Zhao, Daiqing, 2023. "A coupled hydraulic–thermal dynamic model for the steam network in a heat–electricity integrated energy system," Energy, Elsevier, vol. 263(PC).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qu, Kaiping & Yu, Tao & Huang, Linni & Yang, Bo & Zhang, Xiaoshun, 2018. "Decentralized optimal multi-energy flow of large-scale integrated energy systems in a carbon trading market," Energy, Elsevier, vol. 149(C), pages 779-791.
    2. Xu, Fei & Hao, Ling & Chen, Lei & Chen, Qun & Wei, Mingshan & Min, Yong, 2023. "Integrated heat and power optimal dispatch method considering the district heating networks flow rate regulation for wind power accommodation," Energy, Elsevier, vol. 263(PA).
    3. Kong, Xiangyu & Sun, Fangyuan & Huo, Xianxu & Li, Xue & Shen, Yu, 2020. "Hierarchical optimal scheduling method of heat-electricity integrated energy system based on Power Internet of Things," Energy, Elsevier, vol. 210(C).
    4. Qin, Yuxiao & Liu, Pei & Li, Zheng, 2022. "Multi-timescale hierarchical scheduling of an integrated energy system considering system inertia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    5. Cai, Hanmin & Ziras, Charalampos & You, Shi & Li, Rongling & Honoré, Kristian & Bindner, Henrik W., 2018. "Demand side management in urban district heating networks," Applied Energy, Elsevier, vol. 230(C), pages 506-518.
    6. Aunedi, Marko & Pantaleo, Antonio Marco & Kuriyan, Kamal & Strbac, Goran & Shah, Nilay, 2020. "Modelling of national and local interactions between heat and electricity networks in low-carbon energy systems," Applied Energy, Elsevier, vol. 276(C).
    7. Zhang, Menglin & Wu, Qiuwei & Wen, Jinyu & Pan, Bo & Qi, Shiqiang, 2020. "Two-stage stochastic optimal operation of integrated electricity and heat system considering reserve of flexible devices and spatial-temporal correlation of wind power," Applied Energy, Elsevier, vol. 275(C).
    8. Vandermeulen, Annelies & Van Oevelen, Tijs & van der Heijde, Bram & Helsen, Lieve, 2020. "A simulation-based evaluation of substation models for network flexibility characterisation in district heating networks," Energy, Elsevier, vol. 201(C).
    9. Zhang, Suhan & Gu, Wei & Lu, Hai & Qiu, Haifeng & Lu, Shuai & Wang, Dada & Liang, Junyu & Li, Wenyun, 2021. "Superposition-principle based decoupling method for energy flow calculation in district heating networks," Applied Energy, Elsevier, vol. 295(C).
    10. Yuan, Yu & Bai, Zhang & Zhou, Shengdong & Zheng, Bo & Hu, Wenxin, 2022. "Potential of applying the thermochemical recuperation in combined cooling, heating and power generation: Flexible demand response characteristics," Applied Energy, Elsevier, vol. 325(C).
    11. Yang, Xiaohui & Wang, Xiaopeng & Deng, Yeheng & Mei, Linghao & Deng, Fuwei & Zhang, Zhonglian, 2023. "Integrated energy system scheduling model based on non-complete interval multi-objective fuzzy optimization," Renewable Energy, Elsevier, vol. 218(C).
    12. Wu, Chenyu & Gu, Wei & Xu, Yinliang & Jiang, Ping & Lu, Shuai & Zhao, Bo, 2018. "Bi-level optimization model for integrated energy system considering the thermal comfort of heat customers," Applied Energy, Elsevier, vol. 232(C), pages 607-616.
    13. Mu, Chenlu & Ding, Tao & Qu, Ming & Zhou, Quan & Li, Fangxing & Shahidehpour, Mohammad, 2020. "Decentralized optimization operation for the multiple integrated energy systems with energy cascade utilization," Applied Energy, Elsevier, vol. 280(C).
    14. Wang, Yongli & Liu, Zhen & Cai, Chengcong & Xue, Lu & Ma, Yang & Shen, Hekun & Chen, Xin & Liu, Lin, 2022. "Research on the optimization method of integrated energy system operation with multi-subject game," Energy, Elsevier, vol. 245(C).
    15. Charitopoulos, V. & Fajardy, M. & Chyong, C. K. & Reiner, D., 2022. "The case of 100% electrification of domestic heat in Great Britain," Cambridge Working Papers in Economics 2210, Faculty of Economics, University of Cambridge.
    16. Akulker, Handan & Aydin, Erdal, 2023. "Optimal design and operation of a multi-energy microgrid using mixed-integer nonlinear programming: Impact of carbon cap and trade system and taxing on equipment selections," Applied Energy, Elsevier, vol. 330(PA).
    17. Jiang, Tuo & Min, Yong & Zhou, Guiping & Chen, Lei & Chen, Qun & Xu, Fei & Luo, Huanhuan, 2021. "Hierarchical dispatch method for integrated heat and power systems considering the heat transfer process," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    18. Lv, Chaoxian & Yu, Hao & Li, Peng & Wang, Chengshan & Xu, Xiandong & Li, Shuquan & Wu, Jianzhong, 2019. "Model predictive control based robust scheduling of community integrated energy system with operational flexibility," Applied Energy, Elsevier, vol. 243(C), pages 250-265.
    19. Wang, Rutian & Wen, Xiangyun & Wang, Xiuyun & Fu, Yanbo & Zhang, Yu, 2022. "Low carbon optimal operation of integrated energy system based on carbon capture technology, LCA carbon emissions and ladder-type carbon trading," Applied Energy, Elsevier, vol. 311(C).
    20. Serov, A.F. & Nazarov, A.D. & Mamonov, V.N. & Terekhov, V.I., 2019. "Experimental investigation of energy dissipation in the multi-cylinder Couette-Taylor system with independently rotating cylinders," Applied Energy, Elsevier, vol. 251(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:252:y:2022:i:c:s0360544222009057. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.