IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v363y2024ics0306261924004823.html
   My bibliography  Save this article

Stochastic optimization of solar-based distributed energy system: An error-based scenario with a day-ahead and real-time dynamic scheduling approach

Author

Listed:
  • Yan, Yixian
  • Huang, Chang
  • Guan, Junquan
  • Zhang, Qi
  • Cai, Yang
  • Wang, Weiliang

Abstract

Distributed energy systems (DES) have garnered global attention as a promising solution for the expansion of renewable energy sources. However, stochastic uncertainty in renewable sources poses significant challenges in the collaboration optimization of system design and operation. In this study, a comparison analysis was conducted to assess the effectiveness of the conventional distribution-based scenario generation (DS) method for stochastic optimization of a distributed energy system in residential buildings. The results revealed that the DS method inaccurately captured extreme scenarios and exhibited limitations in operation optimization, leading to significant performance evaluation bias. To address these challenges, a novel stochastic optimization approach was developed based on error-based scenarios and a day-ahead and real-time dynamic scheduling strategy (ES-DRS). This approach incorporated solar energy prediction errors to more accurately characterize extreme scenarios, while also considering dynamic dual-scale meteorological boundary condition for rolling operation optimization. Furthermore, the buffer storage and coverage periods in ES-DRS were investigated and discussed during dynamic scheduling. Results demonstrated that when the buffer storage and coverage period were set at 36.22 kWh in summer and 24 h, respectively, the DES with ES-DRS achieved optimal multi-objective performance. This resulted in an annual total cost of 3.21 × 104 USD and CO2 emission of 5.82 tons, representing reductions of 26.45% and 61.06%, respectively, compared to the conventional strategy. Overall, this research contributes to advancing uncertainty analysis and scenario-based optimization in DES, highlighting the potential benefits of adopting the ES-DRS approach to maximize overall performance from both economic and environmental perspectives.

Suggested Citation

  • Yan, Yixian & Huang, Chang & Guan, Junquan & Zhang, Qi & Cai, Yang & Wang, Weiliang, 2024. "Stochastic optimization of solar-based distributed energy system: An error-based scenario with a day-ahead and real-time dynamic scheduling approach," Applied Energy, Elsevier, vol. 363(C).
  • Handle: RePEc:eee:appene:v:363:y:2024:i:c:s0306261924004823
    DOI: 10.1016/j.apenergy.2024.123099
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924004823
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123099?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huang, Chang & Madonski, Rafal & Zhang, Qi & Yan, Yixian & Zhang, Nan & Yang, Yongping, 2022. "On the use of thermal energy storage in solar-aided power generation systems," Applied Energy, Elsevier, vol. 310(C).
    2. Liu, Zhiqiang & Cui, Yanping & Wang, Jiaqiang & Yue, Chang & Agbodjan, Yawovi Souley & Yang, Yu, 2022. "Multi-objective optimization of multi-energy complementary integrated energy systems considering load prediction and renewable energy production uncertainties," Energy, Elsevier, vol. 254(PC).
    3. Wang, Jiangjiang & Huo, Shuojie & Yan, Rujing & Cui, Zhiheng, 2022. "Leveraging heat accumulation of district heating network to improve performances of integrated energy system under source-load uncertainties," Energy, Elsevier, vol. 252(C).
    4. Yan, Rujing & Wang, Jiangjiang & Huo, Shuojie & Qin, Yanbo & Zhang, Jing & Tang, Saiqiu & Wang, Yuwei & Liu, Yan & Zhou, Lin, 2023. "Flexibility improvement and stochastic multi-scenario hybrid optimization for an integrated energy system with high-proportion renewable energy," Energy, Elsevier, vol. 263(PB).
    5. Wang, Jiangjiang & Sui, Jun & Jin, Hongguang, 2015. "An improved operation strategy of combined cooling heating and power system following electrical load," Energy, Elsevier, vol. 85(C), pages 654-666.
    6. Huang, Chang & Yan, Yixian & Madonski, Rafal & Zhang, Qi & Deng, Hui, 2023. "Improving operation strategies for solar-based distributed energy systems: Matching system design with operation," Energy, Elsevier, vol. 276(C).
    7. He, Yi & Guo, Su & Zhou, Jianxu & Song, Guotao & Kurban, Aynur & Wang, Haowei, 2022. "The multi-stage framework for optimal sizing and operation of hybrid electrical-thermal energy storage system," Energy, Elsevier, vol. 245(C).
    8. Jin Wu & Jiangjiang Wang & Jing Wu & Chaofan Ma, 2019. "Exergy and Exergoeconomic Analysis of a Combined Cooling, Heating, and Power System Based on Solar Thermal Biomass Gasification," Energies, MDPI, vol. 12(12), pages 1-19, June.
    9. Noorollahi, Younes & Golshanfard, Aminabbas & Hashemi-Dezaki, Hamed, 2022. "A scenario-based approach for optimal operation of energy hub under different schemes and structures," Energy, Elsevier, vol. 251(C).
    10. Roque Díaz, P. & Benito, Y.R. & Parise, J.A.R., 2010. "Thermoeconomic assessment of a multi-engine, multi-heat-pump CCHP (combined cooling, heating and power generation) system – A case study," Energy, Elsevier, vol. 35(9), pages 3540-3550.
    11. Di Somma, M. & Graditi, G. & Heydarian-Forushani, E. & Shafie-khah, M. & Siano, P., 2018. "Stochastic optimal scheduling of distributed energy resources with renewables considering economic and environmental aspects," Renewable Energy, Elsevier, vol. 116(PA), pages 272-287.
    12. Mavromatidis, Georgios & Orehounig, Kristina & Carmeliet, Jan, 2018. "Design of distributed energy systems under uncertainty: A two-stage stochastic programming approach," Applied Energy, Elsevier, vol. 222(C), pages 932-950.
    13. Lei, Xingyu & Yang, Zhifang & Zhao, Junbo & Yu, Juan, 2022. "Data-driven assisted chance-constrained energy and reserve scheduling with wind curtailment," Applied Energy, Elsevier, vol. 321(C).
    14. Yan, Rujing & Wang, Jiangjiang & Wang, Jiahao & Tian, Lei & Tang, Saiqiu & Wang, Yuwei & Zhang, Jing & Cheng, Youliang & Li, Yuan, 2022. "A two-stage stochastic-robust optimization for a hybrid renewable energy CCHP system considering multiple scenario-interval uncertainties," Energy, Elsevier, vol. 247(C).
    15. Zhou, Siyu & Han, Yang & Mahmoud, Karar & Darwish, Mohamed M.F. & Lehtonen, Matti & Yang, Ping & Zalhaf, Amr S., 2023. "A novel unified planning model for distributed generation and electric vehicle charging station considering multi-uncertainties and battery degradation," Applied Energy, Elsevier, vol. 348(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Yuan & Wang, Jiangjiang & Dong, Fuxiang & Qin, Yanbo & Ma, Zherui & Ma, Yanpeng & Li, Jianqiang, 2021. "Novel flexibility evaluation of hybrid combined cooling, heating and power system with an improved operation strategy," Applied Energy, Elsevier, vol. 300(C).
    2. Liu, Jiejie & Li, Yao & Ma, Yanan & Qin, Ruomu & Meng, Xianyang & Wu, Jiangtao, 2023. "Two-layer multiple scenario optimization framework for integrated energy system based on optimal energy contribution ratio strategy," Energy, Elsevier, vol. 285(C).
    3. Yang, Yu & Liu, Zhiqiang & Xie, Nan & Wang, Jiaqiang & Cui, Yanping & Agbodjan, Yawovi Souley, 2023. "Multi-criteria optimization of multi-energy complementary systems considering reliability, economic and environmental effects," Energy, Elsevier, vol. 269(C).
    4. Huang, Chang & Yan, Yixian & Madonski, Rafal & Zhang, Qi & Deng, Hui, 2023. "Improving operation strategies for solar-based distributed energy systems: Matching system design with operation," Energy, Elsevier, vol. 276(C).
    5. Han, Fengwu & Zeng, Jianfeng & Lin, Junjie & Gao, Chong, 2023. "Multi-stage distributionally robust optimization for hybrid energy storage in regional integrated energy system considering robustness and nonanticipativity," Energy, Elsevier, vol. 277(C).
    6. Zhang, Jiaqi & Tian, Guang & Chen, Xiangyu & Liu, Pei & Li, Zheng, 2023. "A chance-constrained programming approach to optimal planning of low-carbon transition of a regional energy system," Energy, Elsevier, vol. 278(PA).
    7. Shi, Yunhong & Wang, Honglei & Li, Chengjiang & Negnevitsky, Michael & Wang, Xiaolin, 2024. "Stochastic optimization of system configurations and operation of hybrid cascade hydro-wind-photovoltaic with battery for uncertain medium- and long-term load growth," Applied Energy, Elsevier, vol. 364(C).
    8. Han, Fengwu & Zeng, Jianfeng & Lin, Junjie & Zhao, Yunlong & Gao, Chong, 2023. "A stochastic hierarchical optimization and revenue allocation approach for multi-regional integrated energy systems based on cooperative games," Applied Energy, Elsevier, vol. 350(C).
    9. Jia, Bin & Li, Fan & Sun, Bo, 2024. "Knowledge-network-embedded deep reinforcement learning: An innovative way to high-efficiently develop an energy management strategy for the integrated energy system with renewable energy sources and m," Energy, Elsevier, vol. 301(C).
    10. Mingxi Cai & Tiejun Zeng & Linjun Zeng & Xinying Zhou & Xin Huang, 2024. "Optimised Two-Layer Configuration of SESS-CCHP System Considering Wind and Light Output Correlation and Load Sensitivity," Energies, MDPI, vol. 17(18), pages 1-19, September.
    11. Zhang, Chong & Xue, Xue & Du, Qianzhou & Luo, Yimo & Gang, Wenjie, 2019. "Study on the performance of distributed energy systems based on historical loads considering parameter uncertainties for decision making," Energy, Elsevier, vol. 176(C), pages 778-791.
    12. Karmellos, M. & Georgiou, P.N. & Mavrotas, G., 2019. "A comparison of methods for the optimal design of Distributed Energy Systems under uncertainty," Energy, Elsevier, vol. 178(C), pages 318-333.
    13. Afzali, Sayyed Faridoddin & Cotton, James S. & Mahalec, Vladimir, 2020. "Urban community energy systems design under uncertainty for specified levels of carbon dioxide emissions," Applied Energy, Elsevier, vol. 259(C).
    14. Lasemi, Mohammad Ali & Arabkoohsar, Ahmad & Hajizadeh, Amin & Mohammadi-ivatloo, Behnam, 2022. "A comprehensive review on optimization challenges of smart energy hubs under uncertainty factors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    15. Hou, Hongjuan & Wu, Jiwen & Ding, Zeyu & Yang, Bo & Hu, Eric, 2021. "Performance analysis of a solar-assisted combined cooling, heating and power system with an improved operation strategy," Energy, Elsevier, vol. 227(C).
    16. Xu, Xun & Shao, Zhenguo & Chen, Feixiong & Cheng, Guoyang, 2024. "Multi-game optimization operation strategy for integrated energy system considering spatiotemporal correlation of renewable energy," Energy, Elsevier, vol. 303(C).
    17. Wang, Zhi-Hua & Ren, Xin-Yu & Cui, Hong-Jun & Wang, Wen-Qiang & Liu, Jian & He, Zheng-Feng, 2024. "A multi-stage two-layer stochastic design model for integrated energy systems considering multiple uncertainties," Energy, Elsevier, vol. 304(C).
    18. Li, Yuxuan & Zhang, Junli & Wu, Xiao & Shen, Jiong & Maréchal, François, 2023. "Stochastic-robust planning optimization method based on tracking-economy extreme scenario tradeoff for CCHP multi-energy system," Energy, Elsevier, vol. 283(C).
    19. Zhang, Mingze & Li, Weidong & Yu, Samson Shenglong & Wen, Kerui & Muyeen, S.M., 2023. "Day-ahead optimization dispatch strategy for large-scale battery energy storage considering multiple regulation and prediction failures," Energy, Elsevier, vol. 270(C).
    20. Wang, Yuwei & Song, Minghao & Jia, Mengyao & Li, Bingkang & Fei, Haoran & Zhang, Yiyue & Wang, Xuejie, 2023. "Multi-objective distributionally robust optimization for hydrogen-involved total renewable energy CCHP planning under source-load uncertainties," Applied Energy, Elsevier, vol. 342(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:363:y:2024:i:c:s0306261924004823. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.