IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v251y2022ics0360544222008544.html
   My bibliography  Save this article

Do rare earths drive volatility spillover in crude oil, renewable energy, and high-technology markets? — A wavelet-based BEKK- GARCH-X approach

Author

Listed:
  • Zheng, Biao
  • Zhang, Yuquan W.
  • Qu, Fang
  • Geng, Yong
  • Yu, Haishan

Abstract

Amidst the background of an increasingly evidenced shift to renewable energy, many studies explored the relationships between crude oil, renewable energy, and technology stock markets worldwide. However, research has yet to take the raw materials market into account financially. This study investigates the volatility spillovers between crude oil, renewable energy, and high-technology markets in China in time and frequency domains first. Thereupon the tri-market system gets expanded to include the raw materials market (rare earths). The framework of wavelet analysis and BEKK-GARCH model with exogenous variables is applied. The results corroborate that there exists significant volatility spillover between renewable energy and high-technology stock markets, and the renewable energy market in China relates closer to high-technology than crude oil. Besides, the volatility spillovers vary by frequency, with D3 (8–16 days) results appearing more pronounced. Moreover, the rare earths market has significant impacts on the system, especially for high-technology and renewable energy markets. This suggests that as key raw materials to renewable energy development, rare earths may increase the risk transfer of the tri-market system. The results are of potential importance and use for investors and policy makers. In particular, taking the frequency perspective helps devising differentiated portfolio and risk management strategies.

Suggested Citation

  • Zheng, Biao & Zhang, Yuquan W. & Qu, Fang & Geng, Yong & Yu, Haishan, 2022. "Do rare earths drive volatility spillover in crude oil, renewable energy, and high-technology markets? — A wavelet-based BEKK- GARCH-X approach," Energy, Elsevier, vol. 251(C).
  • Handle: RePEc:eee:energy:v:251:y:2022:i:c:s0360544222008544
    DOI: 10.1016/j.energy.2022.123951
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222008544
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.123951?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hamilton, James D., 1996. "This is what happened to the oil price-macroeconomy relationship," Journal of Monetary Economics, Elsevier, vol. 38(2), pages 215-220, October.
    2. Song, Ying & Bouri, Elie & Ghosh, Sajal & Kanjilal, Kakali, 2021. "Rare earth and financial markets: Dynamics of return and volatility connectedness around the COVID-19 outbreak," Resources Policy, Elsevier, vol. 74(C).
    3. Engle, Robert F. & Kroner, Kenneth F., 1995. "Multivariate Simultaneous Generalized ARCH," Econometric Theory, Cambridge University Press, vol. 11(1), pages 122-150, February.
    4. Daly, Kevin, 2008. "Financial volatility: Issues and measuring techniques," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(11), pages 2377-2393.
    5. Chen, Yufeng & Zheng, Biao & Qu, Fang, 2020. "Modeling the nexus of crude oil, new energy and rare earth in China: An asymmetric VAR-BEKK (DCC)-GARCH approach," Resources Policy, Elsevier, vol. 65(C).
    6. Zheng, Biao & Zhang, Yuquan & Chen, Yufeng, 2021. "Asymmetric connectedness and dynamic spillovers between renewable energy and rare earth markets in China: Evidence from firms’ high-frequency data," Resources Policy, Elsevier, vol. 71(C).
    7. Kocaarslan, Baris & Soytas, Ugur, 2019. "Dynamic correlations between oil prices and the stock prices of clean energy and technology firms: The role of reserve currency (US dollar)," Energy Economics, Elsevier, vol. 84(C).
    8. Hoenderdaal, Sander & Tercero Espinoza, Luis & Marscheider-Weidemann, Frank & Graus, Wina, 2013. "Can a dysprosium shortage threaten green energy technologies?," Energy, Elsevier, vol. 49(C), pages 344-355.
    9. Qu, Fang & Chen, Yufeng & Zheng, Biao, 2021. "Is new energy driven by crude oil, high-tech sector or low-carbon notion? New evidence from high-frequency data," Energy, Elsevier, vol. 230(C).
    10. Evans, George W. & Ramey, Garey, 2006. "Adaptive expectations, underparameterization and the Lucas critique," Journal of Monetary Economics, Elsevier, vol. 53(2), pages 249-264, March.
    11. Zhang, Guofu & Du, Ziping, 2017. "Co-movements among the stock prices of new energy, high-technology and fossil fuel companies in China," Energy, Elsevier, vol. 135(C), pages 249-256.
    12. Naeem, Muhammad Abubakr & Peng, Zhe & Suleman, Mouhammed Tahir & Nepal, Rabindra & Shahzad, Syed Jawad Hussain, 2020. "Time and frequency connectedness among oil shocks, electricity and clean energy markets," Energy Economics, Elsevier, vol. 91(C).
    13. Huang, Shian-Chang, 2011. "Wavelet-based multi-resolution GARCH model for financial spillover effects," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(11), pages 2529-2539.
    14. Rua, António & Nunes, Luís C., 2009. "International comovement of stock market returns: A wavelet analysis," Journal of Empirical Finance, Elsevier, vol. 16(4), pages 632-639, September.
    15. Corbet, Shaen & Goodell, John W. & Günay, Samet, 2020. "Co-movements and spillovers of oil and renewable firms under extreme conditions: New evidence from negative WTI prices during COVID-19," Energy Economics, Elsevier, vol. 92(C).
    16. Liu, Xueyong & An, Haizhong & Huang, Shupei & Wen, Shaobo, 2017. "The evolution of spillover effects between oil and stock markets across multi-scales using a wavelet-based GARCH–BEKK model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 374-383.
    17. Henriques, Irene & Sadorsky, Perry, 2008. "Oil prices and the stock prices of alternative energy companies," Energy Economics, Elsevier, vol. 30(3), pages 998-1010, May.
    18. Tiwari, Aviral Kumar & Nasreen, Samia & Hammoudeh, Shawkat & Selmi, Refk, 2021. "Dynamic dependence of oil, clean energy and the role of technology companies: New evidence from copulas with regime switching," Energy, Elsevier, vol. 220(C).
    19. Xi Lu & Michael B. McElroy & Wei Peng & Shiyang Liu & Chris P. Nielsen & Haikun Wang, 2016. "Challenges faced by China compared with the US in developing wind power," Nature Energy, Nature, vol. 1(6), pages 1-6, June.
    20. Reboredo, Juan C. & Ugolini, Andrea, 2020. "Price spillovers between rare earth stocks and financial markets," Resources Policy, Elsevier, vol. 66(C).
    21. Fernandez, Viviana, 2017. "Rare-earth elements market: A historical and financial perspective," Resources Policy, Elsevier, vol. 53(C), pages 26-45.
    22. Ji, Qiang & Zhang, Dayong, 2019. "How much does financial development contribute to renewable energy growth and upgrading of energy structure in China?," Energy Policy, Elsevier, vol. 128(C), pages 114-124.
    23. Hussain, Akhtar & Arif, Syed Muhammad & Aslam, Muhammad, 2017. "Emerging renewable and sustainable energy technologies: State of the art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 12-28.
    24. Zhang, Dayong & Cao, Hong & Zou, Peijiang, 2016. "Exuberance in China's renewable energy investment: Rationality, capital structure and implications with firm level evidence," Energy Policy, Elsevier, vol. 95(C), pages 468-478.
    25. Chen, Sai & Zhang, Ming & Ding, Yueting & Nie, Rui, 2020. "Resilience of China's oil import system under external shocks: A system dynamics simulation analysis," Energy Policy, Elsevier, vol. 146(C).
    26. Xi, Xian & Zhou, Jinsheng & Gao, Xiangyun & Liu, Donghui & Zheng, Huiling & Sun, Qingru, 2019. "Impact of changes in crude oil trade network patterns on national economy," Energy Economics, Elsevier, vol. 84(C).
    27. Sadorsky, Perry, 2012. "Correlations and volatility spillovers between oil prices and the stock prices of clean energy and technology companies," Energy Economics, Elsevier, vol. 34(1), pages 248-255.
    28. Broadstock, David C. & Cao, Hong & Zhang, Dayong, 2012. "Oil shocks and their impact on energy related stocks in China," Energy Economics, Elsevier, vol. 34(6), pages 1888-1895.
    29. Hamilton, James D, 1983. "Oil and the Macroeconomy since World War II," Journal of Political Economy, University of Chicago Press, vol. 91(2), pages 228-248, April.
    30. Wen, Xiaoqian & Guo, Yanfeng & Wei, Yu & Huang, Dengshi, 2014. "How do the stock prices of new energy and fossil fuel companies correlate? Evidence from China," Energy Economics, Elsevier, vol. 41(C), pages 63-75.
    31. Ferrer, Román & Shahzad, Syed Jawad Hussain & López, Raquel & Jareño, Francisco, 2018. "Time and frequency dynamics of connectedness between renewable energy stocks and crude oil prices," Energy Economics, Elsevier, vol. 76(C), pages 1-20.
    32. Kumar, Surender & Managi, Shunsuke & Matsuda, Akimi, 2012. "Stock prices of clean energy firms, oil and carbon markets: A vector autoregressive analysis," Energy Economics, Elsevier, vol. 34(1), pages 215-226.
    33. Dawar, Ishaan & Dutta, Anupam & Bouri, Elie & Saeed, Tareq, 2021. "Crude oil prices and clean energy stock indices: Lagged and asymmetric effects with quantile regression," Renewable Energy, Elsevier, vol. 163(C), pages 288-299.
    34. Loh, Lixia, 2013. "Co-movement of Asia-Pacific with European and US stock market returns: A cross-time-frequency analysis," Research in International Business and Finance, Elsevier, vol. 29(C), pages 1-13.
    35. Wang, Kai-Hua & Su, Chi-Wei & Umar, Muhammad, 2021. "Geopolitical risk and crude oil security: A Chinese perspective," Energy, Elsevier, vol. 219(C).
    36. Song, Yingjie & Ji, Qiang & Du, Ya-Juan & Geng, Jiang-Bo, 2019. "The dynamic dependence of fossil energy, investor sentiment and renewable energy stock markets," Energy Economics, Elsevier, vol. 84(C).
    37. Khalfaoui, R. & Boutahar, M. & Boubaker, H., 2015. "Analyzing volatility spillovers and hedging between oil and stock markets: Evidence from wavelet analysis," Energy Economics, Elsevier, vol. 49(C), pages 540-549.
    38. Reboredo, Juan C. & Rivera-Castro, Miguel A. & Ugolini, Andrea, 2017. "Wavelet-based test of co-movement and causality between oil and renewable energy stock prices," Energy Economics, Elsevier, vol. 61(C), pages 241-252.
    39. Reboredo, Juan C., 2015. "Is there dependence and systemic risk between oil and renewable energy stock prices?," Energy Economics, Elsevier, vol. 48(C), pages 32-45.
    40. Smith Stegen, Karen, 2015. "Heavy rare earths, permanent magnets, and renewable energies: An imminent crisis," Energy Policy, Elsevier, vol. 79(C), pages 1-8.
    41. Delpachitra, Sarath & Hou, Keqiang & Cottrell, Simon, 2020. "The impact of oil price shocks in the Canadian economy: A structural investigation on an oil-exporting economy," Energy Economics, Elsevier, vol. 91(C).
    42. Chakrabarty, Anindya & De, Anupam & Gunasekaran, Angappa & Dubey, Rameshwar, 2015. "Investment horizon heterogeneity and wavelet: Overview and further research directions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 429(C), pages 45-61.
    43. Niu, Hongli, 2021. "Correlations between crude oil and stocks prices of renewable energy and technology companies: A multiscale time-dependent analysis," Energy, Elsevier, vol. 221(C).
    44. Lin, Arthur J. & Chang, Hai Yen & Hsiao, Jung Lieh, 2019. "Does the Baltic Dry Index drive volatility spillovers in the commodities, currency, or stock markets?," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 127(C), pages 265-283.
    45. Maghyereh, Aktham I. & Awartani, Basel & Abdoh, Hussein, 2019. "The co-movement between oil and clean energy stocks: A wavelet-based analysis of horizon associations," Energy, Elsevier, vol. 169(C), pages 895-913.
    46. Imholte, D.D. & Nguyen, R.T. & Vedantam, A. & Brown, M. & Iyer, A. & Smith, B.J. & Collins, J.W. & Anderson, C.G. & O’Kelley, B., 2018. "An assessment of U.S. rare earth availability for supporting U.S. wind energy growth targets," Energy Policy, Elsevier, vol. 113(C), pages 294-305.
    47. Boubaker, Heni & Raza, Syed Ali, 2017. "A wavelet analysis of mean and volatility spillovers between oil and BRICS stock markets," Energy Economics, Elsevier, vol. 64(C), pages 105-117.
    48. Zhang, Hao & Cai, Guixin & Yang, Dongxiao, 2020. "The impact of oil price shocks on clean energy stocks: Fresh evidence from multi-scale perspective," Energy, Elsevier, vol. 196(C).
    49. Michael Spence, 1973. "Job Market Signaling," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 87(3), pages 355-374.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Xinyu & Jiang, Zhengting, 2023. "Time-varying asymmetric volatility spillovers among China’s carbon markets, new energy market and stock market under the shocks of major events," Energy Economics, Elsevier, vol. 126(C).
    2. Zhao, Yihang & Zhou, Zhenxi & Zhang, Kaiwen & Huo, Yaotong & Sun, Dong & Zhao, Huiru & Sun, Jingqi & Guo, Sen, 2023. "Research on spillover effect between carbon market and electricity market: Evidence from Northern Europe," Energy, Elsevier, vol. 263(PF).
    3. Gao, Yang & Liu, Xiaoyi, 2024. "Time and frequency spillovers and drivers between rare earth and energy, metals, green, and agricultural markets," The North American Journal of Economics and Finance, Elsevier, vol. 72(C).
    4. Zhu, Pengfei & Lu, Tuantuan & Chen, Shenglan, 2022. "How do crude oil futures hedge crude oil spot risk after the COVID-19 outbreak? A wavelet denoising-GARCHSK-SJC Copula hedge ratio estimation method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    5. Khan, Faridoon & Muhammadullah, Sara & Sharif, Arshian & Lee, Chien-Chiang, 2024. "The role of green energy stock market in forecasting China's crude oil market: An application of IIS approach and sparse regression models," Energy Economics, Elsevier, vol. 130(C).
    6. Xiaohong Qi & Guofu Zhang & Yuqi Wang, 2022. "Distributional Predictability and Quantile Connectedness of New Energy, Steam Coal, and High-Tech in China," Sustainability, MDPI, vol. 14(21), pages 1-16, October.
    7. Banerjee, Ameet Kumar & Sensoy, Ahmet & Goodell, John W., 2024. "Connectivity and spillover during crises: Highlighting the prominent and growing role of green energy," Energy Economics, Elsevier, vol. 129(C).
    8. Guo, Yaoqi & Shi, Fengyuan & Lin, Boqiang & Zhang, Hongwei, 2023. "The impact of oil shocks from different sources on China's clean energy metal stocks: An analysis of spillover effects based on a time-varying perspective," Resources Policy, Elsevier, vol. 81(C).
    9. Li, Jingpeng & Umar, Muhammad & Huo, Jiale, 2023. "The spillover effect between Chinese crude oil futures market and Chinese green energy stock market," Energy Economics, Elsevier, vol. 119(C).
    10. Yang, Cai & Wang, Xinyi & Gao, Wang, 2022. "Is Bitcoin a better hedging and safe-haven investment than traditional assets against currencies? Evidence from the time-frequency domain approach," The North American Journal of Economics and Finance, Elsevier, vol. 62(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tan, Xueping & Geng, Yong & Vivian, Andrew & Wang, Xinyu, 2021. "Measuring risk spillovers between oil and clean energy stocks: Evidence from a systematic framework," Resources Policy, Elsevier, vol. 74(C).
    2. Farid, Saqib & Karim, Sitara & Naeem, Muhammad A. & Nepal, Rabindra & Jamasb, Tooraj, 2023. "Co-movement between dirty and clean energy: A time-frequency perspective," Energy Economics, Elsevier, vol. 119(C).
    3. Umar, Muhammad & Farid, Saqib & Naeem, Muhammad Abubakr, 2022. "Time-frequency connectedness among clean-energy stocks and fossil fuel markets: Comparison between financial, oil and pandemic crisis," Energy, Elsevier, vol. 240(C).
    4. Jiang, Yonghong & Wang, Jieru & Lie, Jiayi & Mo, Bin, 2021. "Dynamic dependence nexus and causality of the renewable energy stock markets on the fossil energy markets," Energy, Elsevier, vol. 233(C).
    5. Gu, Fu & Wang, Jiqiang & Guo, Jianfeng & Fan, Ying, 2020. "How the supply and demand of steam coal affect the investment in clean energy industry? Evidence from China," Resources Policy, Elsevier, vol. 69(C).
    6. Asl, Mahdi Ghaemi & Canarella, Giorgio & Miller, Stephen M., 2021. "Dynamic asymmetric optimal portfolio allocation between energy stocks and energy commodities: Evidence from clean energy and oil and gas companies," Resources Policy, Elsevier, vol. 71(C).
    7. Syed Kumail Abbas Rizvi & Bushra Naqvi & Nawazish Mirza, 2022. "Is green investment different from grey? Return and volatility spillovers between green and grey energy ETFs," Annals of Operations Research, Springer, vol. 313(1), pages 495-524, June.
    8. Urom, Christian & Mzoughi, Hela & Ndubuisi, Gideon & Guesmi, Khaled, 2022. "Directional predictability and time-frequency spillovers among clean energy sectors and oil price uncertainty," The Quarterly Review of Economics and Finance, Elsevier, vol. 85(C), pages 326-341.
    9. Si Mohammed, K. & Mellit, A., 2023. "The relationship between oil prices and the indices of renewable energy and technology companies based on QQR and GCQ techniques," Renewable Energy, Elsevier, vol. 209(C), pages 97-105.
    10. Tiwari, Aviral Kumar & Trabelsi, Nader & Abakah, Emmanuel Joel Aikins & Nasreen, Samia & Lee, Chien-Chiang, 2023. "An empirical analysis of the dynamic relationship between clean and dirty energy markets," Energy Economics, Elsevier, vol. 124(C).
    11. Chen, Yufeng & Zheng, Biao & Qu, Fang, 2020. "Modeling the nexus of crude oil, new energy and rare earth in China: An asymmetric VAR-BEKK (DCC)-GARCH approach," Resources Policy, Elsevier, vol. 65(C).
    12. Zheng, Biao & Zhang, Yuquan & Chen, Yufeng, 2021. "Asymmetric connectedness and dynamic spillovers between renewable energy and rare earth markets in China: Evidence from firms’ high-frequency data," Resources Policy, Elsevier, vol. 71(C).
    13. Saeed, Tareq & Bouri, Elie & Alsulami, Hamed, 2021. "Extreme return connectedness and its determinants between clean/green and dirty energy investments," Energy Economics, Elsevier, vol. 96(C).
    14. Yahya, Muhammad & Kanjilal, Kakali & Dutta, Anupam & Uddin, Gazi Salah & Ghosh, Sajal, 2021. "Can clean energy stock price rule oil price? New evidences from a regime-switching model at first and second moments," Energy Economics, Elsevier, vol. 95(C).
    15. Zhang, Jiahao & Chen, Xiaodan & Wei, Yu & Bai, Lan, 2023. "Does the connectedness among fossil energy returns matter for renewable energy stock returns? Fresh insights from the Cross-Quantilogram analysis," International Review of Financial Analysis, Elsevier, vol. 88(C).
    16. Bouoiyour, Jamal & Gauthier, Marie & Bouri, Elie, 2023. "Which is leading: Renewable or brown energy assets?," Energy Economics, Elsevier, vol. 117(C).
    17. Geng, Jiang-Bo & Liu, Changyu & Ji, Qiang & Zhang, Dayong, 2021. "Do oil price changes really matter for clean energy returns?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    18. Su, Chi-Wei & Pang, Li-Dong & Qin, Meng & Lobonţ, Oana-Ramona & Umar, Muhammad, 2023. "The spillover effects among fossil fuel, renewables and carbon markets: Evidence under the dual dilemma of climate change and energy crises," Energy, Elsevier, vol. 274(C).
    19. Matteo Foglia & Eliana Angelini, 2020. "Volatility Connectedness between Clean Energy Firms and Crude Oil in the COVID-19 Era," Sustainability, MDPI, vol. 12(23), pages 1-22, November.
    20. Niu, Hongli, 2021. "Correlations between crude oil and stocks prices of renewable energy and technology companies: A multiscale time-dependent analysis," Energy, Elsevier, vol. 221(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:251:y:2022:i:c:s0360544222008544. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.