IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v126y2023ics0140988323005029.html
   My bibliography  Save this article

Time-varying asymmetric volatility spillovers among China’s carbon markets, new energy market and stock market under the shocks of major events

Author

Listed:
  • Wu, Xinyu
  • Jiang, Zhengting

Abstract

This paper investigates the dynamic asymmetric (good and bad) volatility spillover effects among China’s carbon markets, new energy market and stock market by considering the volatility asymmetry in the markets. We infer the good and bad volatilities from the GJR-GARCH model, where they correspond to positive and negative shocks, respectively. Moreover, we extend the traditional (symmetric) marginal net spillover measure to asymmetric (good and bad) marginal net spillover measures to analyze the time-varying asymmetric transmission of volatility spillovers across markets based on external shocks of major events, including the Sino–US trade war, COVID-19 pandemic, and Russia–Ukraine conflict. Our empirical results show that there exists significantly time-varying asymmetric volatility spillover effects among China’s carbon markets, new energy market and stock market. Moreover, the bad volatility spillover effect dominates the good volatility spillover effect. The asymmetric (good and bad) volatility spillovers across markets increase under the shocks of major events. In particular, we observe that the good volatility spillovers increase more significantly compared with the bad volatility spillovers during the Sino–US trade war and COVID-19 pandemic, while the bad volatility spillovers increase more significantly compared with the good volatility spillovers during the Russia–Ukraine conflict.

Suggested Citation

  • Wu, Xinyu & Jiang, Zhengting, 2023. "Time-varying asymmetric volatility spillovers among China’s carbon markets, new energy market and stock market under the shocks of major events," Energy Economics, Elsevier, vol. 126(C).
  • Handle: RePEc:eee:eneeco:v:126:y:2023:i:c:s0140988323005029
    DOI: 10.1016/j.eneco.2023.107004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988323005029
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2023.107004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yu, Lean & Zha, Rui & Stafylas, Dimitrios & He, Kaijian & Liu, Jia, 2020. "Dependences and volatility spillovers between the oil and stock markets: New evidence from the copula and VAR-BEKK-GARCH models," International Review of Financial Analysis, Elsevier, vol. 68(C).
    2. Francis X. Diebold & Kamil Yilmaz, 2009. "Measuring Financial Asset Return and Volatility Spillovers, with Application to Global Equity Markets," Economic Journal, Royal Economic Society, vol. 119(534), pages 158-171, January.
    3. Jozef Baruník & Tomáš Křehlík, 2018. "Measuring the Frequency Dynamics of Financial Connectedness and Systemic Risk," Journal of Financial Econometrics, Oxford University Press, vol. 16(2), pages 271-296.
    4. Dan Nie & Yanbin Li & Xiyu Li & Xuejiao Zhou & Feng Zhang, 2022. "The Dynamic Spillover between Renewable Energy, Crude Oil and Carbon Market: New Evidence from Time and Frequency Domains," Energies, MDPI, vol. 15(11), pages 1-28, May.
    5. Reboredo, Juan C., 2014. "Volatility spillovers between the oil market and the European Union carbon emission market," Economic Modelling, Elsevier, vol. 36(C), pages 229-234.
    6. Baruník, Jozef & Kočenda, Evžen & Vácha, Lukáš, 2016. "Asymmetric connectedness on the U.S. stock market: Bad and good volatility spillovers," Journal of Financial Markets, Elsevier, vol. 27(C), pages 55-78.
    7. Xu Gong & Yujing Jin & Chuanwang Sun, 2022. "Time‐varying pure contagion effect between energy and nonenergy commodity markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(10), pages 1960-1986, October.
    8. Zheng, Biao & Zhang, Yuquan W. & Qu, Fang & Geng, Yong & Yu, Haishan, 2022. "Do rare earths drive volatility spillover in crude oil, renewable energy, and high-technology markets? — A wavelet-based BEKK- GARCH-X approach," Energy, Elsevier, vol. 251(C).
    9. Gong, Xu & Shi, Rong & Xu, Jun & Lin, Boqiang, 2021. "Analyzing spillover effects between carbon and fossil energy markets from a time-varying perspective," Applied Energy, Elsevier, vol. 285(C).
    10. Narayan, Paresh Kumar & Narayan, Seema & K.P, Prabheesh, 2014. "Stock returns, mutual fund flows and spillover shocks," Pacific-Basin Finance Journal, Elsevier, vol. 29(C), pages 146-162.
    11. Li, Zheng-Zheng & Li, Yameng & Huang, Chia-Yun & Peculea, Adelina Dumitrescu, 2023. "Volatility spillover across Chinese carbon markets: Evidence from quantile connectedness method," Energy Economics, Elsevier, vol. 119(C).
    12. Xu, Yingying, 2021. "Risk spillover from energy market uncertainties to the Chinese carbon market," Pacific-Basin Finance Journal, Elsevier, vol. 67(C).
    13. Uddin, Gazi Salah & Hernandez, Jose Areola & Shahzad, Syed Jawad Hussain & Hedström, Axel, 2018. "Multivariate dependence and spillover effects across energy commodities and diversification potentials of carbon assets," Energy Economics, Elsevier, vol. 71(C), pages 35-46.
    14. Nathalie Bertanathalie & Emmanuelle Gautherat & Ozgur Gun, 2017. "Transactions in the European carbon market: a bubble of compliance in a whirlpool of speculation," Cambridge Journal of Economics, Cambridge Political Economy Society, vol. 41(2), pages 575-593.
    15. White, Halbert & Kim, Tae-Hwan & Manganelli, Simone, 2015. "VAR for VaR: Measuring tail dependence using multivariate regression quantiles," Journal of Econometrics, Elsevier, vol. 187(1), pages 169-188.
    16. Koop, Gary & Pesaran, M. Hashem & Potter, Simon M., 1996. "Impulse response analysis in nonlinear multivariate models," Journal of Econometrics, Elsevier, vol. 74(1), pages 119-147, September.
    17. Diebold, Francis X. & Yilmaz, Kamil, 2012. "Better to give than to receive: Predictive directional measurement of volatility spillovers," International Journal of Forecasting, Elsevier, vol. 28(1), pages 57-66.
    18. Tan, Xueping & Sirichand, Kavita & Vivian, Andrew & Wang, Xinyu, 2020. "How connected is the carbon market to energy and financial markets? A systematic analysis of spillovers and dynamics," Energy Economics, Elsevier, vol. 90(C).
    19. Wen, Fenghua & Zhao, Lili & He, Shaoyi & Yang, Guozheng, 2020. "Asymmetric relationship between carbon emission trading market and stock market: Evidences from China," Energy Economics, Elsevier, vol. 91(C).
    20. Pesaran, H. Hashem & Shin, Yongcheol, 1998. "Generalized impulse response analysis in linear multivariate models," Economics Letters, Elsevier, vol. 58(1), pages 17-29, January.
    21. Gong, Xu & Fu, Chengbo & Huang, Qiping & Lin, Meimei, 2022. "International political uncertainty and climate risk in the stock market," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 81(C).
    22. Wen, Fenghua & Zhao, Haocen & Zhao, Lili & Yin, Hua, 2022. "What drive carbon price dynamics in China?," International Review of Financial Analysis, Elsevier, vol. 79(C).
    23. Li, Wenqi, 2021. "COVID-19 and asymmetric volatility spillovers across global stock markets," The North American Journal of Economics and Finance, Elsevier, vol. 58(C).
    24. Kim, Jungmu & Park, Yuen Jung & Ryu, Doojin, 2017. "Stochastic volatility of the futures prices of emission allowances: A Bayesian approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 714-724.
    25. BenSaïda, Ahmed, 2019. "Good and bad volatility spillovers: An asymmetric connectedness," Journal of Financial Markets, Elsevier, vol. 43(C), pages 78-95.
    26. Wang, Yudong & Guo, Zhuangyue, 2018. "The dynamic spillover between carbon and energy markets: New evidence," Energy, Elsevier, vol. 149(C), pages 24-33.
    27. Ji, Qiang & Zhang, Dayong & Zhao, Yuqian, 2020. "Searching for safe-haven assets during the COVID-19 pandemic," International Review of Financial Analysis, Elsevier, vol. 71(C).
    28. Yang Liu & Xueqing Yang & Mei Wang, 2021. "Global Transmission of Returns among Financial, Traditional Energy, Renewable Energy and Carbon Markets: New Evidence," Energies, MDPI, vol. 14(21), pages 1-32, November.
    29. Lanfear, Matthew G. & Lioui, Abraham & Siebert, Mark G., 2019. "Market anomalies and disaster risk: Evidence from extreme weather events," Journal of Financial Markets, Elsevier, vol. 46(C).
    30. Bai, Hang & Hou, Kewei & Kung, Howard & Li, Erica X.N. & Zhang, Lu, 2019. "The CAPM strikes back? An equilibrium model with disasters," Journal of Financial Economics, Elsevier, vol. 131(2), pages 269-298.
    31. Ji, Qiang & Liu, Bing-Yue & Nehler, Henrik & Uddin, Gazi Salah, 2018. "Uncertainties and extreme risk spillover in the energy markets: A time-varying copula-based CoVaR approach," Energy Economics, Elsevier, vol. 76(C), pages 115-126.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gao, Yang & Zhou, Yueyi & Zhao, Longfeng, 2024. "Quantile interdependence and network connectedness between China's green financial and energy markets," Economic Analysis and Policy, Elsevier, vol. 81(C), pages 1148-1177.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Ming-Yuan & Chen, Zhanghangjian & Liang, Zongzheng & Li, Sai-Ping, 2023. "Dynamic and asymmetric connectedness in the global “Carbon-Energy-Stock” system under shocks from exogenous events," Journal of Commodity Markets, Elsevier, vol. 32(C).
    2. Zhou, Yuqin & Wu, Shan & Zhang, Zeyi, 2022. "Multidimensional risk spillovers among carbon, energy and nonferrous metals markets: Evidence from the quantile VAR network," Energy Economics, Elsevier, vol. 114(C).
    3. Adekoya, Oluwasegun B. & Oliyide, Johnson A. & Noman, Ambreen, 2021. "The volatility connectedness of the EU carbon market with commodity and financial markets in time- and frequency-domain: The role of the U.S. economic policy uncertainty," Resources Policy, Elsevier, vol. 74(C).
    4. Zhikai Zhang & Yaojie Zhang & Yudong Wang & Qunwei Wang, 2024. "The predictability of carbon futures volatility: New evidence from the spillovers of fossil energy futures returns," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(4), pages 557-584, April.
    5. Yang Liu & Xueqing Yang & Mei Wang, 2021. "Global Transmission of Returns among Financial, Traditional Energy, Renewable Energy and Carbon Markets: New Evidence," Energies, MDPI, vol. 14(21), pages 1-32, November.
    6. Guo, Li-Yang & Feng, Chao, 2021. "Are there spillovers among China's pilots for carbon emission allowances trading?," Energy Economics, Elsevier, vol. 103(C).
    7. Guangxi Cao & Fei Xie & Meijun Ling, 2022. "Spillover effects in Chinese carbon, energy and financial markets," International Finance, Wiley Blackwell, vol. 25(3), pages 416-434, December.
    8. Apergis, Nicholas & Baruník, Jozef & Lau, Marco Chi Keung, 2017. "Good volatility, bad volatility: What drives the asymmetric connectedness of Australian electricity markets?," Energy Economics, Elsevier, vol. 66(C), pages 108-115.
    9. Mensi, Walid & Al Rababa'a, Abdel Razzaq & Vo, Xuan Vinh & Kang, Sang Hoon, 2021. "Asymmetric spillover and network connectedness between crude oil, gold, and Chinese sector stock markets," Energy Economics, Elsevier, vol. 98(C).
    10. Tan, Xueping & Sirichand, Kavita & Vivian, Andrew & Wang, Xinyu, 2020. "How connected is the carbon market to energy and financial markets? A systematic analysis of spillovers and dynamics," Energy Economics, Elsevier, vol. 90(C).
    11. Chen, Huayi & Shi, Huai-Long & Zhou, Wei-Xing, 2024. "Carbon volatility connectedness and the role of external uncertainties: Evidence from China," Journal of Commodity Markets, Elsevier, vol. 33(C).
    12. Mhadhbi, Mayssa, 2024. "The interconnected carbon, fossil fuels, and clean energy markets: Exploring Europe and China's perspectives on climate change," Finance Research Letters, Elsevier, vol. 62(PB).
    13. Wan, Jieru & Yin, Libo & Wu, You, 2024. "Return and volatility connectedness across global ESG stock indexes: Evidence from the time-frequency domain analysis," International Review of Economics & Finance, Elsevier, vol. 89(PB), pages 397-428.
    14. Lovcha, Yuliya & Perez-Laborda, Alejandro & Sikora, Iryna, 2022. "The determinants of CO2 prices in the EU emission trading system," Applied Energy, Elsevier, vol. 305(C).
    15. Han, Lin & Kordzakhia, Nino & Trück, Stefan, 2020. "Volatility spillovers in Australian electricity markets," Energy Economics, Elsevier, vol. 90(C).
    16. Gabauer, David & Chatziantoniou, Ioannis & Stenfors, Alexis, 2023. "Model-free connectedness measures," Finance Research Letters, Elsevier, vol. 54(C).
    17. Lovcha, Yuliya & Perez-Laborda, Alejandro, 2020. "Dynamic frequency connectedness between oil and natural gas volatilities," Economic Modelling, Elsevier, vol. 84(C), pages 181-189.
    18. Antonakakis, Nikolaos & Chatziantoniou, Ioannis & Filis, George, 2017. "Oil shocks and stock markets: Dynamic connectedness under the prism of recent geopolitical and economic unrest," International Review of Financial Analysis, Elsevier, vol. 50(C), pages 1-26.
    19. Zhao, Lu-Tao & Liu, Hai-Yi & Chen, Xue-Hui, 2024. "How does carbon market interact with energy and sectoral stocks? Evidence from risk spillover and wavelet coherence," Journal of Commodity Markets, Elsevier, vol. 33(C).
    20. Okorie, David Iheke & Lin, Boqiang, 2022. "Givers never lack: Nigerian oil & gas asymmetric network analyses," Energy Economics, Elsevier, vol. 108(C).

    More about this item

    Keywords

    Volatility spillovers; Asymmetric volatility; Major events; China’s carbon markets; New energy market; Stock market;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • G1 - Financial Economics - - General Financial Markets
    • Q43 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy and the Macroeconomy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:126:y:2023:i:c:s0140988323005029. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.