IDEAS home Printed from https://ideas.repec.org/a/eee/ecofin/v72y2024ics1062940824000536.html
   My bibliography  Save this article

Time and frequency spillovers and drivers between rare earth and energy, metals, green, and agricultural markets

Author

Listed:
  • Gao, Yang
  • Liu, Xiaoyi

Abstract

This study investigates the time and frequency return and volatility spillover relationship between rare earth markets and oil, clean energy, gold, base metal, green bond, ESG, and agricultural markets by adopting the spillover indices introduced by Diebold and Yilmaz (2014) and Baruník and Křehlík (2018). As a more comprehensive view of the spillover relationship between rare earth and these industries, this study fills the gap in the existing literature on the relationship between rare earth and energy, metals, or green-related markets. Moreover, we conduct a regression analysis to reveal the drivers of the connectedness network. The empirical results suggest that the rare earth metals (REM) market is a net spillover receiver from the base metal, clean energy, and ESG markets, which are the top three net risk emitters. The network connectedness results shed light on the connections and strengths at different time horizons throughout the sample. The regression results indicate that financial condition and investor sentiment play the most significant roles in driving connectedness and have different effects at different frequencies. Furthermore, severe financial stress may increase short-term risk spillover, which indicates that investors sell out risky assets in stressful times. However, financial stress decreases long-term spillover, which implies that it damages the long-term operation of the financial market. The results could guide investors holding REM assets to balance risk and return and also provide references for policymakers to monitor market conditions and adopt policies to foster the health of the REM market.

Suggested Citation

  • Gao, Yang & Liu, Xiaoyi, 2024. "Time and frequency spillovers and drivers between rare earth and energy, metals, green, and agricultural markets," The North American Journal of Economics and Finance, Elsevier, vol. 72(C).
  • Handle: RePEc:eee:ecofin:v:72:y:2024:i:c:s1062940824000536
    DOI: 10.1016/j.najef.2024.102128
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1062940824000536
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.najef.2024.102128?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dario Caldara & Matteo Iacoviello, 2022. "Measuring Geopolitical Risk," American Economic Review, American Economic Association, vol. 112(4), pages 1194-1225, April.
    2. Song, Ying & Bouri, Elie & Ghosh, Sajal & Kanjilal, Kakali, 2021. "Rare earth and financial markets: Dynamics of return and volatility connectedness around the COVID-19 outbreak," Resources Policy, Elsevier, vol. 74(C).
    3. Diebold, Francis X. & Yılmaz, Kamil, 2014. "On the network topology of variance decompositions: Measuring the connectedness of financial firms," Journal of Econometrics, Elsevier, vol. 182(1), pages 119-134.
    4. Atukeren, Erdal & Çevik, Emrah İsmail & Korkmaz, Turhan, 2021. "Volatility spillovers between WTI and Brent spot crude oil prices: an analysis of granger causality in variance patterns over time," Research in International Business and Finance, Elsevier, vol. 56(C).
    5. Jozef Baruník & Tomáš Křehlík, 2018. "Measuring the Frequency Dynamics of Financial Connectedness and Systemic Risk," Journal of Financial Econometrics, Oxford University Press, vol. 16(2), pages 271-296.
    6. Chen, Yufeng & Zheng, Biao & Qu, Fang, 2020. "Modeling the nexus of crude oil, new energy and rare earth in China: An asymmetric VAR-BEKK (DCC)-GARCH approach," Resources Policy, Elsevier, vol. 65(C).
    7. Zheng, Biao & Zhang, Yuquan & Chen, Yufeng, 2021. "Asymmetric connectedness and dynamic spillovers between renewable energy and rare earth markets in China: Evidence from firms’ high-frequency data," Resources Policy, Elsevier, vol. 71(C).
    8. Proelss, Juliane & Schweizer, Denis & Seiler, Volker, 2020. "The economic importance of rare earth elements volatility forecasts," International Review of Financial Analysis, Elsevier, vol. 71(C).
    9. Zhang, Hongwei & Zhang, Yubo & Gao, Wang & Li, Yingli, 2023. "Extreme quantile spillovers and drivers among clean energy, electricity and energy metals markets," International Review of Financial Analysis, Elsevier, vol. 86(C).
    10. Evans, George W. & Ramey, Garey, 2006. "Adaptive expectations, underparameterization and the Lucas critique," Journal of Monetary Economics, Elsevier, vol. 53(2), pages 249-264, March.
    11. Mensi, Walid & Hammoudeh, Shawkat & Vinh Vo, Xuan & Hoon Kang, Sang, 2021. "Volatility spillovers between oil and equity markets and portfolio risk implications in the US and vulnerable EU countries," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 75(C).
    12. Zheng, Biao & Zhang, Yuquan W. & Qu, Fang & Geng, Yong & Yu, Haishan, 2022. "Do rare earths drive volatility spillover in crude oil, renewable energy, and high-technology markets? — A wavelet-based BEKK- GARCH-X approach," Energy, Elsevier, vol. 251(C).
    13. Zeng, Sheng & Liu, Xinchun & Li, Xiafei & Wei, Qi & Shang, Yue, 2019. "Information dominance among hedging assets: Evidence from return and volatility directional spillovers in time and frequency domains," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    14. Zhang, Wenting & Hamori, Shigeyuki, 2021. "Crude oil market and stock markets during the COVID-19 pandemic: Evidence from the US, Japan, and Germany," International Review of Financial Analysis, Elsevier, vol. 74(C).
    15. Chakrabarty, Anindya & De, Anupam & Gunasekaran, Angappa & Dubey, Rameshwar, 2015. "Investment horizon heterogeneity and wavelet: Overview and further research directions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 429(C), pages 45-61.
    16. Baldi, Lucia & Peri, Massimo & Vandone, Daniela, 2014. "Clean energy industries and rare earth materials: Economic and financial issues," Energy Policy, Elsevier, vol. 66(C), pages 53-61.
    17. Elie Bouri & Kakali Kanjilal & Sajal Ghosh & David Roubaud & Tareq Saeed, 2021. "Rare earth and allied sectors in stock markets: extreme dependence of return and volatility," Applied Economics, Taylor & Francis Journals, vol. 53(49), pages 5710-5730, October.
    18. Kamal, Elham & Bouri, Elie, 2023. "Dependence structure among rare earth and financial markets: A multiscale-vine copula approach," Resources Policy, Elsevier, vol. 83(C).
    19. Li, Yanshuang & Shi, Yujie & Shi, Yongdong & Yi, Shangkun & Zhang, Weiping, 2023. "COVID-19 vaccinations and risk spillovers: Evidence from Asia-Pacific stock markets," Pacific-Basin Finance Journal, Elsevier, vol. 79(C).
    20. Diebold, Francis X. & Yilmaz, Kamil, 2012. "Better to give than to receive: Predictive directional measurement of volatility spillovers," International Journal of Forecasting, Elsevier, vol. 28(1), pages 57-66.
    21. Wang, Dong & Li, Ping & Huang, Lixin, 2022. "Time-frequency volatility spillovers between major international financial markets during the COVID-19 pandemic," Finance Research Letters, Elsevier, vol. 46(PA).
    22. Gong, Xiao-Li & Zhao, Min & Wu, Zhuo-Cheng & Jia, Kai-Wen & Xiong, Xiong, 2023. "Research on tail risk contagion in international energy markets—The quantile time-frequency volatility spillover perspective," Energy Economics, Elsevier, vol. 121(C).
    23. Reboredo, Juan C. & Ugolini, Andrea, 2020. "Price spillovers between rare earth stocks and financial markets," Resources Policy, Elsevier, vol. 66(C).
    24. Pesaran, H. Hashem & Shin, Yongcheol, 1998. "Generalized impulse response analysis in linear multivariate models," Economics Letters, Elsevier, vol. 58(1), pages 17-29, January.
    25. Nikolaos Antonakakis & Ioannis Chatziantoniou & David Gabauer, 2020. "Refined Measures of Dynamic Connectedness based on Time-Varying Parameter Vector Autoregressions," JRFM, MDPI, vol. 13(4), pages 1-23, April.
    26. Hanif, Waqas & Mensi, Walid & Gubareva, Mariya & Teplova, Tamara, 2023. "Impacts of COVID-19 on dynamic return and volatility spillovers between rare earth metals and renewable energy stock markets," Resources Policy, Elsevier, vol. 80(C).
    27. Fan, John Hua & Omura, Akihiro & Roca, Eduardo, 2023. "Geopolitics and rare earth metals," European Journal of Political Economy, Elsevier, vol. 78(C).
    28. Apergis, Emmanuel & Apergis, Nicholas, 2017. "The role of rare earth prices in renewable energy consumption: The actual driver for a renewable energy world," Energy Economics, Elsevier, vol. 62(C), pages 33-42.
    29. Nishimura, Yusaku & Tsutsui, Yoshiro & Hirayama, Kenjiro, 2018. "Do international investors cause stock market spillovers? Comparing responses of cross-listed stocks between accessible and inaccessible markets," Economic Modelling, Elsevier, vol. 69(C), pages 237-248.
    30. Chen, Jinyu & Liang, Zhipeng & Ding, Qian & Liu, Zhenhua, 2022. "Extreme spillovers among fossil energy, clean energy, and metals markets: Evidence from a quantile-based analysis," Energy Economics, Elsevier, vol. 107(C).
    31. Michael Spence, 1973. "Job Market Signaling," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 87(3), pages 355-374.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Basher, Syed Abul & Sadorsky, Perry, 2024. "Do climate change risks affect the systemic risk between the stocks of clean energy, electric vehicles, and critical minerals? Analysis under changing market conditions," Energy Economics, Elsevier, vol. 138(C).
    2. Lin, Zi-Luo & Ouyang, Wen-Pei & Yu, Qing-Rui, 2024. "Risk spillover effects of the Israel–Hamas War on global financial and commodity markets: A time–frequency and network analysis," Finance Research Letters, Elsevier, vol. 66(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Madaleno, Mara & Taskin, Dilvin & Dogan, Eyup & Tzeremes, Panayiotis, 2023. "A dynamic connectedness analysis between rare earth prices and renewable energy," Resources Policy, Elsevier, vol. 85(PB).
    2. Gao, Wang & Wei, Jiajia & Zhang, Hongwei & Zhang, Haizhen, 2024. "The higher-order moments connectedness between rare earth and clean energy markets and the role of geopolitical risk:New insights from a TVP-VAR framework," Energy, Elsevier, vol. 305(C).
    3. Cagli, Efe Caglar, 2023. "The volatility spillover between battery metals and future mobility stocks: Evidence from the time-varying frequency connectedness approach," Resources Policy, Elsevier, vol. 86(PA).
    4. Hanif, Waqas & Mensi, Walid & Gubareva, Mariya & Teplova, Tamara, 2023. "Impacts of COVID-19 on dynamic return and volatility spillovers between rare earth metals and renewable energy stock markets," Resources Policy, Elsevier, vol. 80(C).
    5. Zhang, Jiahao & Chen, Xiaodan & Wei, Yu & Bai, Lan, 2023. "Does the connectedness among fossil energy returns matter for renewable energy stock returns? Fresh insights from the Cross-Quantilogram analysis," International Review of Financial Analysis, Elsevier, vol. 88(C).
    6. Seiler, Volker, 2024. "The relationship between Chinese and FOB prices of rare earth elements – Evidence in the time and frequency domain," The Quarterly Review of Economics and Finance, Elsevier, vol. 95(C), pages 160-179.
    7. Li, Zheng-Zheng & Meng, Qin & Zhang, Linling & Lobont, Oana-Ramona & Shen, Yijuan, 2023. "How do rare earth prices respond to economic and geopolitical factors?," Resources Policy, Elsevier, vol. 85(PA).
    8. Su, Xianfang & Zhao, Yachao, 2023. "What has the strongest connectedness with clean energy? Technology, substitutes, or raw materials," Energy Economics, Elsevier, vol. 128(C).
    9. Song, Ying & Bouri, Elie & Ghosh, Sajal & Kanjilal, Kakali, 2021. "Rare earth and financial markets: Dynamics of return and volatility connectedness around the COVID-19 outbreak," Resources Policy, Elsevier, vol. 74(C).
    10. Zheng, Biao & Zhang, Yuquan & Chen, Yufeng, 2021. "Asymmetric connectedness and dynamic spillovers between renewable energy and rare earth markets in China: Evidence from firms’ high-frequency data," Resources Policy, Elsevier, vol. 71(C).
    11. Basher, Syed Abul & Sadorsky, Perry, 2024. "Do climate change risks affect the systemic risk between the stocks of clean energy, electric vehicles, and critical minerals? Analysis under changing market conditions," Energy Economics, Elsevier, vol. 138(C).
    12. Zhou, Mei-Jing & Huang, Jian-Bai & Chen, Jin-Yu, 2022. "Time and frequency spillovers between political risk and the stock returns of China's rare earths," Resources Policy, Elsevier, vol. 75(C).
    13. Biswas, Priti & Jain, Prachi & Maitra, Debasish, 2024. "Are shocks in the stock markets driven by commodity markets? Evidence from Russia-Ukraine war," Journal of Commodity Markets, Elsevier, vol. 34(C).
    14. Abid, Ilyes & Benkraiem, Ramzi & Mzoughi, Hela & Urom, Christian, 2024. "From black gold to financial fallout: Analyzing extreme risk spillovers in oil-exporting nations," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 91(C).
    15. Kamal, Elham & Bouri, Elie, 2023. "Dependence structure among rare earth and financial markets: A multiscale-vine copula approach," Resources Policy, Elsevier, vol. 83(C).
    16. Cocca, Teodoro & Gabauer, David & Pomberger, Stefan, 2024. "Clean energy market connectedness and investment strategies: New evidence from DCC-GARCH R2 decomposed connectedness measures," Energy Economics, Elsevier, vol. 136(C).
    17. Kočenda, Evžen & Moravcová, Michala, 2024. "Frequency volatility connectedness and portfolio hedging of U.S. energy commodities," Research in International Business and Finance, Elsevier, vol. 69(C).
    18. Li, Yanshuang & Shi, Yujie & Shi, Yongdong & Xiong, Xiong & Yi, Shangkun, 2024. "Time-frequency extreme risk spillovers between COVID-19 news-based panic sentiment and stock market volatility in the multi-layer network: Evidence from the RCEP countries," International Review of Financial Analysis, Elsevier, vol. 94(C).
    19. Zheng, Biao & Zhang, Yuquan W. & Qu, Fang & Geng, Yong & Yu, Haishan, 2022. "Do rare earths drive volatility spillover in crude oil, renewable energy, and high-technology markets? — A wavelet-based BEKK- GARCH-X approach," Energy, Elsevier, vol. 251(C).
    20. Henriques, Irene & Sadorsky, Perry, 2023. "Forecasting rare earth stock prices with machine learning," Resources Policy, Elsevier, vol. 86(PA).

    More about this item

    Keywords

    Rare earth market; Time and frequency connectedness; Risk spillover; Network drivers;
    All these keywords.

    JEL classification:

    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)
    • Q50 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - General
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecofin:v:72:y:2024:i:c:s1062940824000536. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/620163 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.