IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v146y2020ics0301421520305164.html
   My bibliography  Save this article

Resilience of China's oil import system under external shocks: A system dynamics simulation analysis

Author

Listed:
  • Chen, Sai
  • Zhang, Ming
  • Ding, Yueting
  • Nie, Rui

Abstract

Oil is an important energy resource that guarantees the operation of a country's production and life. To reduce the losses caused by the interruption of oil imports, it is urgent to build a system with resilience. By referring to the idea of resilience evolution curve and analyzing the feedback relationship among the four sub-modules of China's oil import system, this paper established a system dynamics (SD) simulation model to study resilience of China's oil import system under external shocks. Then, according to the different parameter groups, we simulated the performance changes of the oil import system in different scenarios, calculated the values of system resilience in different situations, and analyzed the possible critical points that system can still maintain normal operation. i) Diversified measures can enhance system resilience and reduce losses. ii) When the external shocks are strong, the extraordinary production of coal-to-oil and public participation also play an important role in mitigating risks. iii) The increase of strategic crude oil reserves, conversion coefficient of crude oil, the company's ability to guarantee oil security and the ratio of energy substitution enhance system resilience effectively. iv) The threshold for the system to maintain stability is found under a certain scenario.

Suggested Citation

  • Chen, Sai & Zhang, Ming & Ding, Yueting & Nie, Rui, 2020. "Resilience of China's oil import system under external shocks: A system dynamics simulation analysis," Energy Policy, Elsevier, vol. 146(C).
  • Handle: RePEc:eee:enepol:v:146:y:2020:i:c:s0301421520305164
    DOI: 10.1016/j.enpol.2020.111795
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421520305164
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2020.111795?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ouyang, Min & Wang, Zhenghua, 2015. "Resilience assessment of interdependent infrastructure systems: With a focus on joint restoration modeling and analysis," Reliability Engineering and System Safety, Elsevier, vol. 141(C), pages 74-82.
    2. Wen Jun Tan & Allan N. Zhang & Wentong Cai, 2019. "A graph-based model to measure structural redundancy for supply chain resilience," International Journal of Production Research, Taylor & Francis Journals, vol. 57(20), pages 6385-6404, October.
    3. Yao, Lixia & Chang, Youngho, 2015. "Shaping China's energy security: The impact of domestic reforms," Energy Policy, Elsevier, vol. 77(C), pages 131-139.
    4. Zhang, Jing, 2019. "Oil and gas trade between China and countries and regions along the ‘Belt and Road’: A panoramic perspective," Energy Policy, Elsevier, vol. 129(C), pages 1111-1120.
    5. Yao, Lixia & Chang, Youngho, 2014. "Energy security in China: A quantitative analysis and policy implications," Energy Policy, Elsevier, vol. 67(C), pages 595-604.
    6. Roege, Paul E. & Collier, Zachary A. & Mancillas, James & McDonagh, John A. & Linkov, Igor, 2014. "Metrics for energy resilience," Energy Policy, Elsevier, vol. 72(C), pages 249-256.
    7. Sun, Mei & Gao, Cuixia & Shen, Bo, 2014. "Quantifying China's oil import risks and the impact on the national economy," Energy Policy, Elsevier, vol. 67(C), pages 605-611.
    8. Ouyang, Min, 2017. "A mathematical framework to optimize resilience of interdependent critical infrastructure systems under spatially localized attacks," European Journal of Operational Research, Elsevier, vol. 262(3), pages 1072-1084.
    9. Liu, Ximei & Zeng, Ming, 2017. "Renewable energy investment risk evaluation model based on system dynamics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 782-788.
    10. Henry, Devanandham & Emmanuel Ramirez-Marquez, Jose, 2012. "Generic metrics and quantitative approaches for system resilience as a function of time," Reliability Engineering and System Safety, Elsevier, vol. 99(C), pages 114-122.
    11. Emmanuel Garbolino & Jean‐Pierre Chery & Franck Guarnieri, 2016. "A Simplified Approach to Risk Assessment Based on System Dynamics: An Industrial Case Study," Risk Analysis, John Wiley & Sons, vol. 36(1), pages 16-29, January.
    12. Yang, Yuying & Li, Jianping & Sun, Xiaolei & Chen, Jianming, 2014. "Measuring external oil supply risk: A modified diversification index with country risk and potential oil exports," Energy, Elsevier, vol. 68(C), pages 930-938.
    13. Wang, Qiang & Li, Rongrong, 2017. "Decline in China's coal consumption: An evidence of peak coal or a temporary blip?," Energy Policy, Elsevier, vol. 108(C), pages 696-701.
    14. Mayada Omer & Ali Mostashari & Roshanak Nilchiani, 2013. "Assessing resilience in a regional road-based transportation network," International Journal of Industrial and Systems Engineering, Inderscience Enterprises Ltd, vol. 13(4), pages 389-408.
    15. Beccue, Phillip C. & Huntington, Hillard G. & Leiby, Paul N. & Vincent, Kenneth R., 2018. "An updated assessment of oil market disruption risks," Energy Policy, Elsevier, vol. 115(C), pages 456-469.
    16. Yao, Lixia & Shi, Xunpeng & Andrews-Speed, Philip, 2018. "Conceptualization of energy security in resource-poor economies: The role of the nature of economy," Energy Policy, Elsevier, vol. 114(C), pages 394-402.
    17. Song, Yan & Zhang, Ming & Sun, Ruifeng, 2019. "Using a new aggregated indicator to evaluate China's energy security," Energy Policy, Elsevier, vol. 132(C), pages 167-174.
    18. O'Brien, Geoff & Hope, Alex, 2010. "Localism and energy: Negotiating approaches to embedding resilience in energy systems," Energy Policy, Elsevier, vol. 38(12), pages 7550-7558, December.
    19. Sun, Xiaolei & Liu, Chang & Chen, Xiuwen & Li, Jianping, 2017. "Modeling systemic risk of crude oil imports: Case of China’s global oil supply chain," Energy, Elsevier, vol. 121(C), pages 449-465.
    20. Gao, Dan & Li, Zheng & Liu, Pei & Zhao, Jiazhu & Zhang, Yuning & Li, Canbing, 2018. "A coordinated energy security model taking strategic petroleum reserve and alternative fuels into consideration," Energy, Elsevier, vol. 145(C), pages 171-181.
    21. Shuang Wang & Dong Yang & Jing Lu, 2018. "A connectivity reliability-cost approach for path selection in the maritime transportation of China’s crude oil imports," Maritime Policy & Management, Taylor & Francis Journals, vol. 45(5), pages 567-584, July.
    22. Hongjian Zhou & Jing’ai Wang & Jinhong Wan & Huicong Jia, 2010. "Resilience to natural hazards: a geographic perspective," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 53(1), pages 21-41, April.
    23. Wang, Delu & Ma, Gang & Song, Xuefeng & Liu, Yun, 2017. "Energy price slump and policy response in the coal-chemical industry district: A case study of Ordos with a system dynamics model," Energy Policy, Elsevier, vol. 104(C), pages 325-339.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Sai & Ding, Yueting & Song, Yan & Zhang, Ming & Nie, Rui, 2023. "Study on China's energy system resilience under the scenarios of long-term shortage of imported oil," Energy, Elsevier, vol. 270(C).
    2. Yang, Weixin & Pan, Lingying & Ding, Qinyi, 2023. "Dynamic analysis of natural gas substitution for crude oil: Scenario simulation and quantitative evaluation," Energy, Elsevier, vol. 282(C).
    3. Alqahtani, Abdullah & Klein, Tony, 2021. "Oil price changes, uncertainty, and geopolitical risks: On the resilience of GCC countries to global tensions," Energy, Elsevier, vol. 236(C).
    4. Qian, Lanping & Bai, Yang & Wang, Wenya & Meng, Fanyi & Chen, Zhisong, 2023. "Natural gas crisis, system resilience and emergency responses: A China case," Energy, Elsevier, vol. 276(C).
    5. Yin, Yuwei & Lam, Jasmine Siu Lee, 2022. "Impacts of energy transition on Liquefied Natural Gas shipping: A case study of China and its strategies," Transport Policy, Elsevier, vol. 115(C), pages 262-274.
    6. Zheng, Biao & Zhang, Yuquan W. & Qu, Fang & Geng, Yong & Yu, Haishan, 2022. "Do rare earths drive volatility spillover in crude oil, renewable energy, and high-technology markets? — A wavelet-based BEKK- GARCH-X approach," Energy, Elsevier, vol. 251(C).
    7. Chen, Sai & Song, Yan & Ding, Yueting & Zhang, Ming & Nie, Rui, 2021. "Using long short-term memory model to study risk assessment and prediction of China’s oil import from the perspective of resilience theory," Energy, Elsevier, vol. 215(PB).
    8. Mahdi Bashiri & Benny Tjahjono & Jordon Lazell & Jennifer Ferreira & Tomy Perdana, 2021. "The Dynamics of Sustainability Risks in the Global Coffee Supply Chain: A Case of Indonesia–UK," Sustainability, MDPI, vol. 13(2), pages 1-20, January.
    9. Guo, Kun & Luan, Liyuan & Cai, Xiaoli & Zhang, Dayong & Ji, Qiang, 2024. "Energy trade stability of China: Policy options with increasing climate risks," Energy Policy, Elsevier, vol. 184(C).
    10. Ding, Yueting & Chen, Sai & Zheng, Yilei & Chai, Shanglei & Nie, Rui, 2022. "Resilience assessment of China's natural gas system under supply shortages: A system dynamics approach," Energy, Elsevier, vol. 247(C).
    11. Xie, Minghua & Min, Jialin & Fang, Xingming & Sun, Chuanwang & Zhang, Zhen, 2022. "Policy selection based on China's natural gas security evaluation and comparison," Energy, Elsevier, vol. 247(C).
    12. Hendalianpour, Ayad & Liu, Peide & Amirghodsi, Sirous & Hamzehlou, Mohammad, 2022. "Designing a System Dynamics model to simulate criteria affecting oil and gas development contracts," Resources Policy, Elsevier, vol. 78(C).
    13. Yin, Yuwei & Lam, Jasmine Siu Lee, 2022. "Bottlenecks of LNG supply chain in energy transition: A case study of China using system dynamics simulation," Energy, Elsevier, vol. 250(C).
    14. Liu, Wei & Li, Xin & Liu, Chunyan & Wang, Minxi & Liu, Litao, 2023. "Resilience assessment of the cobalt supply chain in China under the impact of electric vehicles and geopolitical supply risks," Resources Policy, Elsevier, vol. 80(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Sai & Ding, Yueting & Song, Yan & Zhang, Ming & Nie, Rui, 2023. "Study on China's energy system resilience under the scenarios of long-term shortage of imported oil," Energy, Elsevier, vol. 270(C).
    2. Chen, Sai & Song, Yan & Ding, Yueting & Zhang, Ming & Nie, Rui, 2021. "Using long short-term memory model to study risk assessment and prediction of China’s oil import from the perspective of resilience theory," Energy, Elsevier, vol. 215(PB).
    3. Mohsin, M. & Zhou, P. & Iqbal, N. & Shah, S.A.A., 2018. "Assessing oil supply security of South Asia," Energy, Elsevier, vol. 155(C), pages 438-447.
    4. Boyd, Roger & Ufimtseva, Anastasia, 2021. "Facilitating peaceful rise: The increasing role of geopolitics and domestic legitimacy in China's energy policy," Energy Policy, Elsevier, vol. 158(C).
    5. Wang, Kai-Hua & Su, Chi-Wei & Umar, Muhammad, 2021. "Geopolitical risk and crude oil security: A Chinese perspective," Energy, Elsevier, vol. 219(C).
    6. Xiaodong Guo & Chen Hao & Shuwen Niu, 2020. "Analysis of Oil Import Risk and Strategic Petroleum Reserve: The Case of China," Sustainability, MDPI, vol. 12(9), pages 1-20, May.
    7. Guo, Kun & Luan, Liyuan & Cai, Xiaoli & Zhang, Dayong & Ji, Qiang, 2024. "Energy trade stability of China: Policy options with increasing climate risks," Energy Policy, Elsevier, vol. 184(C).
    8. Wang, Deqing & Tian, Sihua & Fang, Lei & Xu, Yan, 2020. "A functional index model for dynamically evaluating China's energy security," Energy Policy, Elsevier, vol. 147(C).
    9. Wang, Kai-Hua & Zhao, Yan-Xin & Su, Yun Hsuan & Lobonţ, Oana-Ramona, 2023. "Energy security and CO2 emissions: New evidence from time-varying and quantile-varying aspects," Energy, Elsevier, vol. 273(C).
    10. Sun, Xiaolei & Liu, Chang & Chen, Xiuwen & Li, Jianping, 2017. "Modeling systemic risk of crude oil imports: Case of China’s global oil supply chain," Energy, Elsevier, vol. 121(C), pages 449-465.
    11. Shao, Yanmin & Qiao, Han & Wang, Shouyang, 2017. "What determines China's crude oil importing trade patterns? Empirical evidences from 55 countries between 1992 and 2015," Energy Policy, Elsevier, vol. 109(C), pages 854-862.
    12. Poulin, Craig & Kane, Michael B., 2021. "Infrastructure resilience curves: Performance measures and summary metrics," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    13. Haritha, P.C. & Anjaneyulu, M.V.L.R., 2024. "Comparison of topological functionality-based resilience metrics using link criticality," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    14. Matsumoto, Ken’ichi & Shiraki, Hiroto, 2018. "Energy security performance in Japan under different socioeconomic and energy conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 391-401.
    15. Peng, Cheng & Chen, Heng & Lin, Chaoran & Guo, Shuang & Yang, Zhi & Chen, Ke, 2021. "A framework for evaluating energy security in China: Empirical analysis of forecasting and assessment based on energy consumption," Energy, Elsevier, vol. 234(C).
    16. Das, Laya & Munikoti, Sai & Natarajan, Balasubramaniam & Srinivasan, Babji, 2020. "Measuring smart grid resilience: Methods, challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    17. Cai, Baoping & Xie, Min & Liu, Yonghong & Liu, Yiliu & Feng, Qiang, 2018. "Availability-based engineering resilience metric and its corresponding evaluation methodology," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 216-224.
    18. Ding, Yueting & Zhang, Ming & Chen, Sai & Nie, Rui, 2020. "Assessing the resilience of China’s natural gas importation under network disruptions," Energy, Elsevier, vol. 211(C).
    19. Tiong, Achara & Vergara, Hector A., 2023. "Evaluation of network expansion decisions for resilient interdependent critical infrastructures with different topologies," International Journal of Critical Infrastructure Protection, Elsevier, vol. 42(C).
    20. Liedtke, Stephan, 2017. "Chinese energy investments in Europe: An analysis of policy drivers and approaches," Energy Policy, Elsevier, vol. 101(C), pages 659-669.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:146:y:2020:i:c:s0301421520305164. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.