IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v247y2022ics0360544222004029.html
   My bibliography  Save this article

Analysis of the long-term effects of solar radiation on the indoor thermal comfort in office buildings

Author

Listed:
  • Song, Bing
  • Bai, Lujian
  • Yang, Liu

Abstract

Windows play a critical role in building energy consumption and thermal comfort. Although many different models have been adopted for developing standards for indoor thermal comfort evaluation, the impact of solar radiation on occupant thermal sensation is still overlooked. In this study, the SMRT-Air temperature deviation method, in which the impact of solar radiation can be assessed based on the deviation of the solar-adjusted mean radiant temperature from air temperature, was developed to help the designer conveniently evaluate the impact of solar radiation on indoor thermal comfort in initial design stage. This method was applied to evaluate the effect of solar radiation on occupants in office buildings under different orientation and climate zones in China. The results show that the effect of solar radiation on thermal comfort is more severe in cold climate zones. Controlling the amount of solar radiation transmitted by windows facing east and west is more critical than for windows oriented in other directions. An appropriate decrease SHGC of windows from the current standard requirements can reduce over 86% discomfort times when SHGC decrease to 0.3 in all climate zones. The outcomes of this study can help designers implement appropriate measures for improving indoor thermal comfort.

Suggested Citation

  • Song, Bing & Bai, Lujian & Yang, Liu, 2022. "Analysis of the long-term effects of solar radiation on the indoor thermal comfort in office buildings," Energy, Elsevier, vol. 247(C).
  • Handle: RePEc:eee:energy:v:247:y:2022:i:c:s0360544222004029
    DOI: 10.1016/j.energy.2022.123499
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222004029
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.123499?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pacheco, R. & Ordóñez, J. & Martínez, G., 2012. "Energy efficient design of building: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3559-3573.
    2. Bai, Lujian & Wang, Shusheng, 2019. "Definition of new thermal climate zones for building energy efficiency response to the climate change during the past decades in China," Energy, Elsevier, vol. 170(C), pages 709-719.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jutta Hollands & Eldira Sesto & Azra Korjenic, 2022. "Thermal Comfort in a Greened Office Building: Investigation and Evaluation through Measurement and Survey," Sustainability, MDPI, vol. 14(21), pages 1-27, November.
    2. Zhixing Li & Mimi Tian & Xiaoqing Zhu & Shujing Xie & Xin He, 2022. "A Review of Integrated Design Process for Building Climate Responsiveness," Energies, MDPI, vol. 15(19), pages 1-35, September.
    3. Haiying, Wang & Fengming, Zhang & Jiankai, Li & Hang, Meng & Huxiang, Lin, 2024. "Effects of different zoning thermostat controls on thermal comfort and cooling energy consumption in reading rooms of a library," Energy, Elsevier, vol. 292(C).
    4. Rashad, Magdi & Żabnieńska-Góra, Alina & Norman, Les & Jouhara, Hussam, 2022. "Analysis of energy demand in a residential building using TRNSYS," Energy, Elsevier, vol. 254(PB).
    5. Hua Wang & Jijun Liu & Zhonghong Wu & Jia Liu & Lu Yi & Yixue Li & Siqi Li & Meizhi Wang, 2023. "Research on the Flexible Heating Model of an Air-Source Heat Pump System in Nursery Pig Houses," Agriculture, MDPI, vol. 13(5), pages 1-13, May.
    6. Buyak, Nadia & Deshko, Valeriy & Bilous, Inna & Pavlenko, Anatoliy & Sapunov, Anatoliy & Biriukov, Dmytro, 2023. "Dynamic interdependence of comfortable thermal conditions and energy efficiency increase in a nursery school building for heating and cooling period," Energy, Elsevier, vol. 283(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tianyu Zhang & Xianyan Chen & Fen Zhang & Zhi Yang & Yong Wang & Yonghua Li & Linxiao Wei, 2022. "A Case Study of Refined Building Climate Zoning under Complicated Terrain Conditions in China," IJERPH, MDPI, vol. 19(14), pages 1-17, July.
    2. Gao, Jiajia & Li, Anbang & Xu, Xinhua & Gang, Wenjie & Yan, Tian, 2018. "Ground heat exchangers: Applications, technology integration and potentials for zero energy buildings," Renewable Energy, Elsevier, vol. 128(PA), pages 337-349.
    3. Chau, C.K. & Xu, J.M. & Leung, T.M. & Ng, W.Y., 2017. "Evaluation of the impacts of end-of-life management strategies for deconstruction of a high-rise concrete framed office building," Applied Energy, Elsevier, vol. 185(P2), pages 1595-1603.
    4. Chi, Fang'ai & Zhang, Jianxun & Li, Gaomei & Zhu, Zongzhou & Bart, Dewancker, 2019. "An investigation of the impact of Building Azimuth on energy consumption in sizhai traditional dwellings," Energy, Elsevier, vol. 180(C), pages 594-614.
    5. Wang, Lan & Lee, Eric W.M. & Hussian, Syed Asad & Yuen, Anthony Chun Yin & Feng, Wei, 2021. "Quantitative impact analysis of driving factors on annual residential building energy end-use combining machine learning and stochastic methods," Applied Energy, Elsevier, vol. 299(C).
    6. Shi, Qian & Lai, Xiaodong & Xie, Xin & Zuo, Jian, 2014. "Assessment of green building policies – A fuzzy impact matrix approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 203-211.
    7. Toparlar, Y. & Blocken, B. & Maiheu, B. & van Heijst, G.J.F., 2018. "Impact of urban microclimate on summertime building cooling demand: A parametric analysis for Antwerp, Belgium," Applied Energy, Elsevier, vol. 228(C), pages 852-872.
    8. Pérez-Sánchez, Laura À. & Velasco-Fernández, Raúl & Giampietro, Mario, 2022. "Factors and actions for the sustainability of the residential sector. The nexus of energy, materials, space, and time use," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    9. De Boeck, L. & Verbeke, S. & Audenaert, A. & De Mesmaeker, L., 2015. "Improving the energy performance of residential buildings: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 960-975.
    10. Raatikainen, Mika & Skön, Jukka-Pekka & Leiviskä, Kauko & Kolehmainen, Mikko, 2016. "Intelligent analysis of energy consumption in school buildings," Applied Energy, Elsevier, vol. 165(C), pages 416-429.
    11. Luo, Yongqiang & Zhang, Ling & Liu, Zhongbing & Yu, Jinghua & Xu, Xinhua & Su, Xiaosong, 2020. "Towards net zero energy building: The application potential and adaptability of photovoltaic-thermoelectric-battery wall system," Applied Energy, Elsevier, vol. 258(C).
    12. Dietz, Annelore & Vera, Sergio & Bustamante, Waldo & Flamant, Gilles, 2020. "Multi-objective optimization to balance thermal comfort and energy use in a mining camp located in the Andes Mountains at high altitude," Energy, Elsevier, vol. 199(C).
    13. Ma, Weiwu & Fang, Song & Liu, Gang & Zhou, Ruoyu, 2017. "Modeling of district load forecasting for distributed energy system," Applied Energy, Elsevier, vol. 204(C), pages 181-205.
    14. Zhang, Sheng & Liu, Jun & Zhang, Xia & Wang, Fenghao, 2024. "Properly shortening design time scale of medium-deep borehole heat exchanger for high building heating performances with high computational efficiency," Energy, Elsevier, vol. 290(C).
    15. Chi, Fang'ai & Xu, Liming & Pan, Jiajie & Wang, Ruonan & Tao, Yekang & Guo, Yuang & Peng, Changhai, 2020. "Prediction of the total day-round thermal load for residential buildings at various scales based on weather forecast data," Applied Energy, Elsevier, vol. 280(C).
    16. Rodríguez-Soria, Beatriz & Domínguez-Hernández, Javier & Pérez-Bella, José M. & del Coz-Díaz, Juan J., 2015. "Quantitative analysis of the divergence in energy losses allowed through building envelopes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 1000-1008.
    17. Yupei Lai & Yutong Li & Xinyi Feng & Tao Ma, 2022. "Green retrofit of existing residential buildings in China: An investigation on residents’ perceptions," Energy & Environment, , vol. 33(2), pages 332-353, March.
    18. Bai, Lujian & Yang, Liu & Song, Bing & Liu, Na, 2020. "A new approach to develop a climate classification for building energy efficiency addressing Chinese climate characteristics," Energy, Elsevier, vol. 195(C).
    19. Stevanović, Sanja, 2013. "Optimization of passive solar design strategies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 177-196.
    20. Battista, Gabriele & de Lieto Vollaro, Emanuele & Ocłoń, Paweł & Vallati, Andrea, 2021. "Effect of mutual radiative exchange between the surfaces of a street canyon on the building thermal energy demand," Energy, Elsevier, vol. 226(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:247:y:2022:i:c:s0360544222004029. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.