IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i21p14450-d962613.html
   My bibliography  Save this article

Thermal Comfort in a Greened Office Building: Investigation and Evaluation through Measurement and Survey

Author

Listed:
  • Jutta Hollands

    (Research Unit of Ecological Building Technologies, Institute of Material Technology, Building Physics and Building Ecology, Faculty of Civil and Environmental Engineering, Vienna University of Technology, A-1040 Vienna, Austria)

  • Eldira Sesto

    (Research Unit of Ecological Building Technologies, Institute of Material Technology, Building Physics and Building Ecology, Faculty of Civil and Environmental Engineering, Vienna University of Technology, A-1040 Vienna, Austria)

  • Azra Korjenic

    (Research Unit of Ecological Building Technologies, Institute of Material Technology, Building Physics and Building Ecology, Faculty of Civil and Environmental Engineering, Vienna University of Technology, A-1040 Vienna, Austria)

Abstract

The productivity, health, and well-being of office workers are known to be influenced by the indoor thermal conditions, most significantly the temperature and air humidity. This article is based on measurements and calculated predictions, as well as surveys of the employees in a newly renovated office building in Vienna, Austria. The renovation measures include street-side facade greening. The aim of this study was to determine the possible effects these renovation measures have on thermal comfort inside the building. The evaluation is carried out in accordance with the standards based on the predicted mean vote (PMV), calculated with the collected measurement data. Based on the survey, the calculation results are compared with the subjective perception of the employees. Even though the measurements and the survey were carried out only one year after the renovation, about 70% of the employees’ statements speak about noticeable positive changes due to the renovation measures. Regarding daylight and artificial lighting conditions, a total of 80% of employees are neutral or satisfied. The majority also expresses neutrality or satisfaction regarding spatial conditions and air quality. The satisfaction of the employees is reflected in their work performance. The goal is therefore to achieve the highest possible satisfaction of the building’s users.

Suggested Citation

  • Jutta Hollands & Eldira Sesto & Azra Korjenic, 2022. "Thermal Comfort in a Greened Office Building: Investigation and Evaluation through Measurement and Survey," Sustainability, MDPI, vol. 14(21), pages 1-27, November.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:21:p:14450-:d:962613
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/21/14450/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/21/14450/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Katharina Halbmayer & Jutta Hollands & Sara Alasu & Azra Korjenic & Barbara Pichler & Elisabeth Reitinger & Eva Zojer & Bente Knoll & Agnes Renkin & Ralf Dopheide, 2021. "GREEN: Cool & Care—Research and Development of Greening Measures in Nursing Homes in Austria. Technical and Social Interconnections," Sustainability, MDPI, vol. 13(20), pages 1-16, October.
    2. Ormandy, David & Ezratty, Véronique, 2012. "Health and thermal comfort: From WHO guidance to housing strategies," Energy Policy, Elsevier, vol. 49(C), pages 116-121.
    3. Jutta Hollands & Azra Korjenic, 2021. "Indirect Economic Effects of Vertical Indoor Green in the Context of Reduced Sick Leave in Offices," Sustainability, MDPI, vol. 13(4), pages 1-18, February.
    4. Song, Bing & Bai, Lujian & Yang, Liu, 2022. "Analysis of the long-term effects of solar radiation on the indoor thermal comfort in office buildings," Energy, Elsevier, vol. 247(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kunhao Liu & Lianglin Zou & Yuanlong Li & Kai Wang & Haiyu Wang & Jifeng Song, 2023. "Measurement and Analysis of Light Leakage in Plastic Optical Fiber Daylighting System," Sustainability, MDPI, vol. 15(4), pages 1-14, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daniela D’Alessandro & Andrea Rebecchi & Letizia Appolloni & Andrea Brambilla & Silvio Brusaferro & Maddalena Buffoli & Maurizio Carta & Alessandra Casuccio & Liliana Coppola & Maria Vittoria Corazza , 2023. "Re-Thinking the Environment, Cities, and Living Spaces for Public Health Purposes, According with the COVID-19 Lesson: The LVII Erice Charter," Land, MDPI, vol. 12(10), pages 1-17, September.
    2. Burlinson, Andrew & Giulietti, Monica & Law, Cherry & Liu, Hui-Hsuan, 2021. "Fuel poverty and financial distress," Energy Economics, Elsevier, vol. 102(C).
    3. Mara Hammerle & Paul J. Burke, 2022. "Solar PV and energy poverty in Australia's residential sector," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 66(4), pages 822-841, October.
    4. Jakub Sokołowski & Jan Frankowski & Piotr Lewandowski, 2024. "Energy poverty, housing conditions, and self-assessed health: evidence from Poland," Housing Studies, Taylor & Francis Journals, vol. 39(9), pages 2325-2354, October.
    5. Taleghani, Mohammad & Tenpierik, Martin & Kurvers, Stanley & van den Dobbelsteen, Andy, 2013. "A review into thermal comfort in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 201-215.
    6. Picchio, Matteo & van Ours, Jan C., 2024. "The impact of high temperatures on performance in work-related activities," Labour Economics, Elsevier, vol. 87(C).
    7. Buyak, Nadia & Deshko, Valeriy & Bilous, Inna & Pavlenko, Anatoliy & Sapunov, Anatoliy & Biriukov, Dmytro, 2023. "Dynamic interdependence of comfortable thermal conditions and energy efficiency increase in a nursery school building for heating and cooling period," Energy, Elsevier, vol. 283(C).
    8. Kahouli, Sondès, 2020. "An economic approach to the study of the relationship between housing hazards and health: The case of residential fuel poverty in France," Energy Economics, Elsevier, vol. 85(C).
    9. Poruschi, Lavinia & Ambrey, Christopher L., 2018. "Densification, what does it mean for fuel poverty and energy justice? An empirical analysis," Energy Policy, Elsevier, vol. 117(C), pages 208-217.
    10. Etxebarria-Mallea, Matxalen & Oregi, Xabat & Grijalba, Olatz & Hernández-Minguillón, Rufino, 2021. "The impact of energy refurbishment interventions on annual energy demand, indoor thermal behaviour and temperature-related health risk," Energy Policy, Elsevier, vol. 153(C).
    11. Piotr Lewandowski & Katarzyna Salach, 2018. "Pomiar ubostwa energetycznego na podstawie danych BBGD - metodologia i zastosowanie," IBS Research Reports 01/2018, Instytut Badan Strukturalnych.
    12. Hughes, Caroline & Natarajan, Sukumar & Liu, Chunde & Chung, Woong June & Herrera, Manuel, 2019. "Winter thermal comfort and health in the elderly," Energy Policy, Elsevier, vol. 134(C).
    13. Harriet Thomson & Carolyn Snell & Stefan Bouzarovski, 2017. "Health, Well-Being and Energy Poverty in Europe: A Comparative Study of 32 European Countries," IJERPH, MDPI, vol. 14(6), pages 1-20, May.
    14. Vilches, Alberto & Barrios Padura, Ángela & Molina Huelva, Marta, 2017. "Retrofitting of homes for people in fuel poverty: Approach based on household thermal comfort," Energy Policy, Elsevier, vol. 100(C), pages 283-291.
    15. Jan S. Krause & Gerrit Nanninga & Patrick Ring & Ulrich Schmidt & Daniel Schunk, 2020. "The Influence of Ambient Temperature on Social Perception and Social Behavior," Working Papers 2013, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    16. I-Ming Feng & Jun-Hong Chen & Bo-Wei Zhu & Lei Xiong, 2018. "Assessment of and Improvement Strategies for the Housing of Healthy Elderly: Improving Quality of Life," Sustainability, MDPI, vol. 10(3), pages 1-32, March.
    17. Noor Muhammad Abd Rahman & Lim Chin Haw & Ahmad Fazlizan, 2021. "A Literature Review of Naturally Ventilated Public Hospital Wards in Tropical Climate Countries for Thermal Comfort and Energy Saving Improvements," Energies, MDPI, vol. 14(2), pages 1-22, January.
    18. Eduardo Roque & Romeu Vicente & Ricardo M. S. F. Almeida & Victor M. Ferreira, 2022. "The Impact of Thermal Inertia on the Indoor Thermal Environment of Light Steel Framing Constructions," Energies, MDPI, vol. 15(9), pages 1-17, April.
    19. Bongokuhle Mabuya & Mary Scholes, 2020. "The Three Little Houses: A Comparative Study of Indoor and Ambient Temperatures in Three Low-Cost Housing Types in Gauteng and Mpumalanga, South Africa," IJERPH, MDPI, vol. 17(10), pages 1-22, May.
    20. Hua Wang & Jijun Liu & Zhonghong Wu & Jia Liu & Lu Yi & Yixue Li & Siqi Li & Meizhi Wang, 2023. "Research on the Flexible Heating Model of an Air-Source Heat Pump System in Nursery Pig Houses," Agriculture, MDPI, vol. 13(5), pages 1-13, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:21:p:14450-:d:962613. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.