IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v247y2022ics0360544222003899.html
   My bibliography  Save this article

On the optimization of the double-layer combustion chamber with and without EGR of a diesel engine

Author

Listed:
  • Guo, Qiang
  • Liu, Jie
  • Wu, Binyang
  • Liu, Yize

Abstract

This paper focuses on the multi-objective optimization of the fuel injection parameters, combustion chamber geometry parameters and engine operating parameters of a double-layer combustion chamber. Three optimization objectives have been optimized by combining the NSGA-II genetic algorithm and the KIVA-3V program, including the indicated specific fuel consumption (ISFC) rate, NOx and soot emissions. Meanwhile, 10 engine parameters, including two injection parameters, six combustion bowl geometry parameters, compression ratio, and Exhaust Gas Recirculation (EGR) rate, are optimized simultaneously. The results show that the NOx and soot emissions exhibit an apparent trade-off relationship as well as the NOx emission versus ISFC. In addition, response surface analysis is conducted to investigate the influence of the selected parameters on the optimization objectives. It indicates that the retarded injection timing and EGR are conducive to the reduction of the NOx emission. Moreover, the double-layer combustion chamber with an impingement platform can enhance the fuel-air mixing process, and the air utilization rate of the combustion chamber is henceforth improved. Based on our optimization, the high temperature area is widely distributed throughout the double-layer combustion chamber, and most of the soot can be oxidized sufficiently in the main combustion period.

Suggested Citation

  • Guo, Qiang & Liu, Jie & Wu, Binyang & Liu, Yize, 2022. "On the optimization of the double-layer combustion chamber with and without EGR of a diesel engine," Energy, Elsevier, vol. 247(C).
  • Handle: RePEc:eee:energy:v:247:y:2022:i:c:s0360544222003899
    DOI: 10.1016/j.energy.2022.123486
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222003899
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.123486?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lotfan, S. & Ghiasi, R. Akbarpour & Fallah, M. & Sadeghi, M.H., 2016. "ANN-based modeling and reducing dual-fuel engine’s challenging emissions by multi-objective evolutionary algorithm NSGA-II," Applied Energy, Elsevier, vol. 175(C), pages 91-99.
    2. Caliskan, Hakan & Mori, Kazutoshi, 2017. "Environmental, enviroeconomic and enhanced thermodynamic analyses of a diesel engine with diesel oxidation catalyst (DOC) and diesel particulate filter (DPF) after treatment systems," Energy, Elsevier, vol. 128(C), pages 128-144.
    3. Deb, Madhujit & Debbarma, Bishop & Majumder, Arindam & Banerjee, Rahul, 2016. "Performance –emission optimization of a diesel-hydrogen dual fuel operation: A NSGA II coupled TOPSIS MADM approach," Energy, Elsevier, vol. 117(P1), pages 281-290.
    4. Yao Fu & Liyan Feng & Hua Tian & Wuqiang Long & Dongsheng Dong & Xianyin Leng, 2018. "Visualization Investigation of the Influence of Chamber Profile and Injection Parameters on Fuel Spray Spreading in a Double-Layer Diverging Combustion Chamber for a DI Diesel Engine," Energies, MDPI, vol. 11(9), pages 1-16, September.
    5. Torregrosa, A.J. & Broatch, A. & García, A. & Mónico, L.F., 2013. "Sensitivity of combustion noise and NOx and soot emissions to pilot injection in PCCI Diesel engines," Applied Energy, Elsevier, vol. 104(C), pages 149-157.
    6. Kim, Hyung Jun & Park, Su Han & Lee, Chang Sik, 2016. "Impact of fuel spray angles and injection timing on the combustion and emission characteristics of a high-speed diesel engine," Energy, Elsevier, vol. 107(C), pages 572-579.
    7. Zhang, Quanchang & Yao, Mingfa & Zheng, Zunqing & Liu, Haifeng & Xu, Jia, 2012. "Experimental study of n-butanol addition on performance and emissions with diesel low temperature combustion," Energy, Elsevier, vol. 47(1), pages 515-521.
    8. Soloiu, Valentin & Duggan, Marvin & Harp, Spencer & Vlcek, Brian & Williams, David, 2013. "PFI (port fuel injection) of n-butanol and direct injection of biodiesel to attain LTC (low-temperature combustion) for low-emissions idling in a compression engine," Energy, Elsevier, vol. 52(C), pages 143-154.
    9. Kumar, Madan & Tsujimura, Taku & Suzuki, Yasumasa, 2018. "NOx model development and validation with diesel and hydrogen/diesel dual-fuel system on diesel engine," Energy, Elsevier, vol. 145(C), pages 496-506.
    10. Choi, Seungmok & Park, Wonah & Lee, Sangyul & Min, Kyoungdoug & Choi, Hoimyung, 2011. "Methods for in-cylinder EGR stratification and its effects on combustion and emission characteristics in a diesel engine," Energy, Elsevier, vol. 36(12), pages 6948-6959.
    11. Verschaeren, Roel & Schaepdryver, Wouter & Serruys, Thomas & Bastiaen, Marc & Vervaeke, Lieven & Verhelst, Sebastian, 2014. "Experimental study of NOx reduction on a medium speed heavy duty diesel engine by the application of EGR (exhaust gas recirculation) and Miller timing," Energy, Elsevier, vol. 76(C), pages 614-621.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gao, Lingjie & Tang, Aikun & Cai, Tao & Tenkolu, Getachew Alemu, 2024. "Experimental analysis and multi-objective optimization of flame dynamics and combustion performance in methane-fueled slit-type combustors," Applied Energy, Elsevier, vol. 355(C).
    2. Gao, Sheng & Zhang, Yanhui & Zhang, Zhiqing & Tan, Dongli & Li, Junming & Yin, Zibin & Hu, Jingyi & Zhao, Ziheng, 2023. "Multi-objective optimization of the combustion chamber geometry for a highland diesel engine fueled with diesel/n-butanol/PODEn by ANN-NSGA III," Energy, Elsevier, vol. 282(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pachiannan, Tamilselvan & Zhong, Wenjun & Rajkumar, Sundararajan & He, Zhixia & Leng, Xianying & Wang, Qian, 2019. "A literature review of fuel effects on performance and emission characteristics of low-temperature combustion strategies," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    2. Wei, Liangjie & Cheung, C.S. & Huang, Zuohua, 2014. "Effect of n-pentanol addition on the combustion, performance and emission characteristics of a direct-injection diesel engine," Energy, Elsevier, vol. 70(C), pages 172-180.
    3. E, Jiaqiang & Pham, Minhhieu & Zhao, D. & Deng, Yuanwang & Le, DucHieu & Zuo, Wei & Zhu, Hao & Liu, Teng & Peng, Qingguo & Zhang, Zhiqing, 2017. "Effect of different technologies on combustion and emissions of the diesel engine fueled with biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 620-647.
    4. Liu, Kaimin & Fu, Jianqin & Deng, Banglin & Yang, Jing & Tang, Qijun & Liu, Jingping, 2014. "The influences of pressure and temperature on laminar flame propagations of n-butanol, iso-octane and their blends," Energy, Elsevier, vol. 73(C), pages 703-715.
    5. Rajesh Kumar, B. & Saravanan, S., 2016. "Use of higher alcohol biofuels in diesel engines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 84-115.
    6. Chen, Guisheng & Di, Lei & Zhang, Quanchang & Zheng, Zunqing & Zhang, Wei, 2015. "Effects of 2,5-dimethylfuran fuel properties coupling with EGR (exhaust gas recirculation) on combustion and emission characteristics in common-rail diesel engines," Energy, Elsevier, vol. 93(P1), pages 284-293.
    7. Feng, Hongqing & Zheng, Zunqing & Yao, Mingfa & Cheng, Gang & Wang, Meiying & Wang, Xin, 2013. "Effects of exhaust gas recirculation on low temperature combustion using wide distillation range diesel," Energy, Elsevier, vol. 51(C), pages 291-296.
    8. Thomas, Justin Jacob & Sabu, V.R. & Nagarajan, G. & Kumar, Suraj & Basrin, G., 2020. "Influence of waste vegetable oil biodiesel and hexanol on a reactivity controlled compression ignition engine combustion and emissions," Energy, Elsevier, vol. 206(C).
    9. Huang, Haozhong & Wang, Qingxin & Shi, Cheng & Liu, Qingsheng & Zhou, Chengzhong, 2016. "Comparative study of effects of pilot injection and fuel properties on low temperature combustion in diesel engine under a medium EGR rate," Applied Energy, Elsevier, vol. 179(C), pages 1194-1208.
    10. How, H.G. & Teoh, Y.H. & Masjuki, H.H. & Nguyen, H.-T. & Kalam, M.A. & Chuah, H.G. & Alabdulkarem, A., 2019. "Impact of two-stage injection fuel quantity on engine-out responses of a common-rail diesel engine fueled with coconut oil methyl esters-diesel fuel blends," Renewable Energy, Elsevier, vol. 139(C), pages 515-529.
    11. Torregrosa, A.J. & Broatch, A. & Novella, R. & Gomez-Soriano, J. & Mónico, L.F., 2017. "Impact of gasoline and Diesel blends on combustion noise and pollutant emissions in Premixed Charge Compression Ignition engines," Energy, Elsevier, vol. 137(C), pages 58-68.
    12. M, Vinod Babu & K, Madhu Murthy & G, Amba Prasad Rao, 2017. "Butanol and pentanol: The promising biofuels for CI engines – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1068-1088.
    13. Krishnamoorthi, M. & Malayalamurthi, R., 2018. "Engine characteristics analysis of chaulmoogra oil blends and corrosion analysis of injector nozzle using scanning electron microscopy/energy dispersive spectroscopy," Energy, Elsevier, vol. 165(PB), pages 1292-1319.
    14. Lu, Zhen & Liu, Mengyu & Shi, Lei & Wang, Tianyou & Lu, Tianlong & Wang, Huaiyin, 2022. "Numerical research of the injected exhaust gas recirculation strategy on a two-stroke low-speed marine diesel engine," Energy, Elsevier, vol. 244(PA).
    15. Zhao, Yuwei & Wang, Ying & Li, Dongchang & Lei, Xiong & Liu, Shenghua, 2014. "Combustion and emission characteristics of a DME (dimethyl ether)-diesel dual fuel premixed charge compression ignition engine with EGR (exhaust gas recirculation)," Energy, Elsevier, vol. 72(C), pages 608-617.
    16. Vallinayagam, R. & Vedharaj, S. & Yang, W.M. & Lee, P.S. & Chua, K.J.E. & Chou, S.K., 2013. "Combustion performance and emission characteristics study of pine oil in a diesel engine," Energy, Elsevier, vol. 57(C), pages 344-351.
    17. Jain, Ayush & Singh, Akhilendra Pratap & Agarwal, Avinash Kumar, 2017. "Effect of split fuel injection and EGR on NOx and PM emission reduction in a low temperature combustion (LTC) mode diesel engine," Energy, Elsevier, vol. 122(C), pages 249-264.
    18. Yu, Hanzhengnan & Liang, Xingyu & Shu, Gequn & Wang, Yuesen & Sun, Xiuxiu & Zhang, Hongsheng, 2018. "Numerical investigation of the effect of two-stage injection strategy on combustion and emission characteristics of a diesel engine," Applied Energy, Elsevier, vol. 227(C), pages 634-642.
    19. Jia, Ming & Li, Yaopeng & Xie, Maozhao & Wang, Tianyou, 2013. "Numerical evaluation of the potential of late intake valve closing strategy for diesel PCCI (premixed charge compression ignition) engine in a wide speed and load range," Energy, Elsevier, vol. 51(C), pages 203-215.
    20. Dongzhi Gao & Mubasher Ikram & Chao Geng & Yangyi Wu & Xiaodan Li & Chao Jin & Zunqing Zheng & Mengliang Li & Haifeng Liu, 2023. "Effects of Anhydrous and Hydrous Fusel Oil on Combustion and Emissions on a Heavy-Duty Compression-Ignition Engine," Energies, MDPI, vol. 16(17), pages 1-14, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:247:y:2022:i:c:s0360544222003899. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.