IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i9p2343-d167954.html
   My bibliography  Save this article

Visualization Investigation of the Influence of Chamber Profile and Injection Parameters on Fuel Spray Spreading in a Double-Layer Diverging Combustion Chamber for a DI Diesel Engine

Author

Listed:
  • Yao Fu

    (School of Energy and Power Engineering, Dalian University of Technology, Dalian 116024, China)

  • Liyan Feng

    (School of Energy and Power Engineering, Dalian University of Technology, Dalian 116024, China)

  • Hua Tian

    (School of Energy and Power Engineering, Dalian University of Technology, Dalian 116024, China)

  • Wuqiang Long

    (School of Energy and Power Engineering, Dalian University of Technology, Dalian 116024, China)

  • Dongsheng Dong

    (School of Energy and Power Engineering, Dalian University of Technology, Dalian 116024, China
    Graduate School of Engineering, Chiba University, Chiba 2638522, Japan)

  • Xianyin Leng

    (Institute for Energy Research, Jiangsu University, Zhenjiang 212013, China)

Abstract

The double-layer diverging combustion chamber (DLDC chamber) aims to improve the fuel–air mixing formation and promote in-cylinder air utilization by changing fuel spray spreading characteristics. In order to investigate how the DLDC chamber profile and injection parameters affect the fuel spray spreading, visualization of fuel injection and impingement tests were carried out on two different DLDC chambers with different fuel injection parameters. The visualization test results showed that double-layer fuel spray spreading was obtained in the two DLDC chambers and the peripheral top clearance of each chamber was utilized efficiently. The DLDC chamber with a 50% upper layer volume provided a larger fuel spray distribution region after the start of injection. The DLDC chamber with a 70% upper layer volume obtained a larger fuel spray distribution region with better top clearance utilization at the later stage of injection. The injection parameters mentioned in this research showed significant effects on the fuel spray spreading in the DLDC chamber. Increasing the injection pressure provided a larger fuel spray distribution area at the beginning of injection. Decreasing the nozzle hole diameter had a positive influence on obtaining a larger fuel spray distribution. Advancing the injection timing enabled the enlarging of the fuel distribution region.

Suggested Citation

  • Yao Fu & Liyan Feng & Hua Tian & Wuqiang Long & Dongsheng Dong & Xianyin Leng, 2018. "Visualization Investigation of the Influence of Chamber Profile and Injection Parameters on Fuel Spray Spreading in a Double-Layer Diverging Combustion Chamber for a DI Diesel Engine," Energies, MDPI, vol. 11(9), pages 1-16, September.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:9:p:2343-:d:167954
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/9/2343/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/9/2343/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Berggren, Christian & Magnusson, Thomas, 2012. "Reducing automotive emissions—The potentials of combustion engine technologies and the power of policy," Energy Policy, Elsevier, vol. 41(C), pages 636-643.
    2. Soriano, J.A. & Mata, C. & Armas, O. & Ávila, C., 2018. "A zero-dimensional model to simulate injection rate from first generation common rail diesel injectors under thermodynamic diagnosis," Energy, Elsevier, vol. 158(C), pages 845-858.
    3. Taylor, Alex M.K.P., 2008. "Science review of internal combustion engines," Energy Policy, Elsevier, vol. 36(12), pages 4657-4667, December.
    4. Zhang, Yue-Jun & Peng, Yu-Lu & Ma, Chao-Qun & Shen, Bo, 2017. "Can environmental innovation facilitate carbon emissions reduction? Evidence from China," Energy Policy, Elsevier, vol. 100(C), pages 18-28.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guo, Qiang & Liu, Jie & Wu, Binyang & Liu, Yize, 2022. "On the optimization of the double-layer combustion chamber with and without EGR of a diesel engine," Energy, Elsevier, vol. 247(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ming Wen & Yufeng Li & Weiqing Zhu & Rulou Cao & Kai Sun, 2022. "Experimental Study on Effects of RCSL and RCTL Combustion Chamber for Combustion Process of Highly Intensified Diesel Engine," Energies, MDPI, vol. 15(17), pages 1-13, August.
    2. Demeulenaere, Xavier, 2019. "The use of automotive fleets to support the diffusion of Alternative Fuel Vehicles: A Rapid Evidence Assessment of barriers and decision mechanisms," Research in Transportation Economics, Elsevier, vol. 76(C).
    3. Zhao, Jinxing, 2017. "Research and application of over-expansion cycle (Atkinson and Miller) engines – A review," Applied Energy, Elsevier, vol. 185(P1), pages 300-319.
    4. Haoran Zhang & Rongxia Zhang & Guomin Li & Wei Li & Yongrok Choi, 2020. "Has China’s Emission Trading System Achieved the Development of a Low-Carbon Economy in High-Emission Industrial Subsectors?," Sustainability, MDPI, vol. 12(13), pages 1-20, July.
    5. Awaworyi Churchill, Sefa & Inekwe, John & Smyth, Russell & Zhang, Xibin, 2019. "R&D intensity and carbon emissions in the G7: 1870–2014," Energy Economics, Elsevier, vol. 80(C), pages 30-37.
    6. Mamat, Aman M.I. & Romagnoli, Alessandro & Martinez-Botas, Ricardo F., 2014. "Characterisation of a low pressure turbine for turbocompounding applications in a heavily downsized mild-hybrid gasoline engine," Energy, Elsevier, vol. 64(C), pages 3-16.
    7. Juan Luo & Chong Xu & Boyu Yang & Xiaoyu Chen & Yinyin Wu, 2022. "Quantitative Analysis of China’s Carbon Emissions Trading Policies: Perspectives of Policy Content Validity and Carbon Emissions Reduction Effect," Energies, MDPI, vol. 15(14), pages 1-20, July.
    8. Bai-Chen Xie & Jie Gao & Shuang Zhang & ZhongXiang Zhang, 2017. "What Factors Affect the Competiveness of Power Generation Sector in China? An Analysis Based on Game Cross-efficiency," Working Papers 2017.12, Fondazione Eni Enrico Mattei.
    9. Zhang, Yue-Jun & Liu, Zhao & Zhou, Si-Ming & Qin, Chang-Xiong & Zhang, Huan, 2018. "The impact of China's Central Rise Policy on carbon emissions at the stage of operation in road sector," Economic Modelling, Elsevier, vol. 71(C), pages 159-173.
    10. Sun, Chuanwang & Tie, Ying & Yu, Lili, 2024. "How to achieve both environmental protection and firm performance improvement: Based on China's carbon emissions trading (CET) policy," Energy Economics, Elsevier, vol. 130(C).
    11. Razzaq, Asif & Sharif, Arshian & Ozturk, Ilhan & Skare, Marinko, 2022. "Inclusive infrastructure development, green innovation, and sustainable resource management: Evidence from China’s trade-adjusted material footprints," Resources Policy, Elsevier, vol. 79(C).
    12. Wang, Chao & Zhang, Yue-Jun, 2022. "The effect of environmental regulation and skill premium on the inflow of FDI:Evidence from Chinese industrial sectors," International Review of Economics & Finance, Elsevier, vol. 81(C), pages 227-242.
    13. Tan, Xiujie & Sun, Qian & Wang, Meiji & Se Cheong, Tsun & Yan Shum, Wai & Huang, Jinpeng, 2022. "Assessing the effects of emissions trading systems on energy consumption and energy mix," Applied Energy, Elsevier, vol. 310(C).
    14. Xin Nie & Jianxian Wu & Han Wang & Weijuan Li & Chengdao Huang & Lihua Li, 2022. "Contributing to carbon peak: Estimating the causal impact of eco‐industrial parks on low‐carbon development in China," Journal of Industrial Ecology, Yale University, vol. 26(4), pages 1578-1593, August.
    15. Malayaranjan Sahoo & Narayan Sethi, 2022. "The dynamic impact of urbanization, structural transformation, and technological innovation on ecological footprint and PM2.5: evidence from newly industrialized countries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(3), pages 4244-4277, March.
    16. Sun, Chuanwang & Zhan, Yanhong & Du, Gang, 2020. "Can value-added tax incentives of new energy industry increase firm's profitability? Evidence from financial data of China's listed companies," Energy Economics, Elsevier, vol. 86(C).
    17. Xiaoqi Li & Dingfei Guo & Chao Feng, 2022. "The Carbon Emissions Trading Policy of China: Does It Really Promote the Enterprises’ Green Technology Innovations?," IJERPH, MDPI, vol. 19(21), pages 1-15, November.
    18. Yu, Hanzhengnan & Liang, Xingyu & Shu, Gequn & Wang, Yuesen & Sun, Xiuxiu & Zhang, Hongsheng, 2018. "Numerical investigation of the effect of two-stage injection strategy on combustion and emission characteristics of a diesel engine," Applied Energy, Elsevier, vol. 227(C), pages 634-642.
    19. Yongliang Yang & Jin Wen & Yi Li, 2020. "The Impact of Environmental Information Disclosure on the Firm Value of Listed Manufacturing Firms: Evidence from China," IJERPH, MDPI, vol. 17(3), pages 1-20, February.
    20. Brand, Christian, 2016. "Beyond ‘Dieselgate’: Implications of unaccounted and future air pollutant emissions and energy use for cars in the United Kingdom," Energy Policy, Elsevier, vol. 97(C), pages 1-12.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:9:p:2343-:d:167954. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.