IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v8y2015i6p4827-4838d50145.html
   My bibliography  Save this article

Ash Content and Calorific Energy of Corn Stover Components in Eastern Canada

Author

Listed:
  • Pierre-Luc Lizotte

    (Université Laval, 2425 rue de l'Agriculture, Québec City, QC G1V 0A6, Canada)

  • Philippe Savoie

    (Université Laval, 2425 rue de l'Agriculture, Québec City, QC G1V 0A6, Canada
    Agriculture and Agri-Food Canada, 2560 Hochelaga Blvd., Québec City, QC G1V 2J3, Canada)

  • Alain De Champlain

    (Université Laval, 1065 avenue de la Médecine, Québec City, QC G1V 0A6, Canada)

Abstract

Corn stover is an abundant agricultural residue that could be used on the farm for heating and crop drying. Ash content and calorific energy of corn grain and six stover components were measured from standing plants during the grain maturing period, between mid-September and mid-November. Ash of stover in standing corn averaged 4.8% in a cool crop heat unit zone (2300–2500 crop heat units (CHU)) and 7.3% in a warmer zone (2900–3100 CHU). The corn cob had the lowest ash content (average of 2.2%) while leaves had the highest content (from 7.7% to 12.6%). In the fall, ash content of mowed and raked stover varied between 5.5% and 11.7%. In the following spring, ash content of stover mowed, raked and baled in May averaged 3.6%. The cob and stalk located below the first ear contained the highest calorific energy with 17.72 MJ·kg −1 . Leaves and grain had the lowest energy with an average of 16.99 MJ·kg −1 . The stover heat of combustion was estimated at 17.47 MJ·kg −1 in the cool zone and 17.26 MJ·kg −1 in the warm zone. Based on presented results, a partial “cob and husk” harvest system would collect less energy per unit area than total stover harvest (44 vs . 156 GJ·ha −1 ) and less biomass (2.51 vs . 9.13 t·dry matter (DM)·ha −1 ) but the fuel quality would be considerably higher with a low ash-to-energy ratio (1.45 vs . 4.27 g·MJ −1 ).

Suggested Citation

  • Pierre-Luc Lizotte & Philippe Savoie & Alain De Champlain, 2015. "Ash Content and Calorific Energy of Corn Stover Components in Eastern Canada," Energies, MDPI, vol. 8(6), pages 1-12, May.
  • Handle: RePEc:gam:jeners:v:8:y:2015:i:6:p:4827-4838:d:50145
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/8/6/4827/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/8/6/4827/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xiong, Shaojun & Zhang, Yufen & Zhuo, Yue & Lestander, Torbjörn & Geladi, Paul, 2010. "Variations in fuel characteristics of corn (Zea mays) stovers: General spatial patterns and relationships to soil properties," Renewable Energy, Elsevier, vol. 35(6), pages 1185-1191.
    2. René Morissette & Philippe Savoie & Joey Villeneuve, 2011. "Combustion of Corn Stover Bales in a Small 146-kW Boiler," Energies, MDPI, vol. 4(7), pages 1-10, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Edyta Boros-Lajszner & Jadwiga Wyszkowska & Agata Borowik & Jan Kucharski, 2021. "Energetic Value of Elymus elongatus L. and Zea mays L. Grown on Soil Polluted with Ni 2+ , Co 2+ , Cd 2+ , and Sensitivity of Rhizospheric Bacteria to Heavy Metals," Energies, MDPI, vol. 14(16), pages 1-22, August.
    2. Masum, Md Farhad Hossain & Dwivedi, Puneet & Anderson, William F., 2020. "Estimating unit production cost, carbon intensity, and carbon abatement cost of electricity generation from bioenergy feedstocks in Georgia, United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    3. Edyta Boros-Lajszner & Jadwiga Wyszkowska & Jan Kucharski, 2024. "The Effect of Carpinus betulus Ash on the Maize as an Energy Crop and the Enzymatic Soil Properties," Energies, MDPI, vol. 17(12), pages 1-16, June.
    4. Weronika Kruszelnicka, 2020. "A New Model for Environmental Assessment of the Comminution Process in the Chain of Biomass Energy Processing †," Energies, MDPI, vol. 13(2), pages 1-21, January.
    5. Mirosław Wyszkowski & Natalia Kordala, 2024. "Effects of Humic Acids on Calorific Value and Chemical Composition of Maize Biomass in Iron-Contaminated Soil Phytostabilisation," Energies, MDPI, vol. 17(7), pages 1-19, April.
    6. Hugo Guzmán-Bello & Iosvani López-Díaz & Miguel Aybar-Mejía & Máximo Domínguez-Garabitos & Jose Atilio de Frias, 2023. "Biomass Energy Potential of Agricultural Residues in the Dominican Republic," Sustainability, MDPI, vol. 15(22), pages 1-19, November.
    7. Muhammad Azhar Ali & Abdul Ghani & Abdul Nasir & Muhammad Yamin & Muhammad Nadeem, 2022. "Design, Fabrication And Exhaust Gases Analysis Of Corn Cob Feeding Unit Installed With Steam Boiler," Acta Mechanica Malaysia (AMM), Zibeline International Publishing, vol. 5(2), pages 47-51, October.
    8. Cindy Nereida Morales-Máximo & Luis Bernardo López-Sosa & José Guadalupe Rutiaga-Quiñones & Juan Carlos Corral-Huacuz & Arturo Aguilera-Mandujano & Luis Fernando Pintor-Ibarra & Armando López-Miranda , 2022. "Characterization of Agricultural Residues of Zea mays for Their Application as Solid Biofuel: Case Study in San Francisco Pichátaro, Michoacán, Mexico," Energies, MDPI, vol. 15(19), pages 1-16, September.
    9. Weiwei Wang, 2023. "Integrated Assessment of Economic Supply and Environmental Effects of Biomass Co-Firing in Coal Power Plants: A Case Study of Jiangsu, China," Energies, MDPI, vol. 16(6), pages 1-22, March.
    10. Brojolall, Neeha & Surroop, Dinesh, 2022. "Improving fuel characteristics through torrefaction," Energy, Elsevier, vol. 246(C).
    11. Grzegorz Maj & Paweł Krzaczek & Wojciech Gołębiowski & Tomasz Słowik & Joanna Szyszlak-Bargłowicz & Grzegorz Zając, 2022. "Energy Consumption and Quality of Pellets Made of Waste from Corn Grain Drying Process," Sustainability, MDPI, vol. 14(13), pages 1-15, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Baral, Nawa Raj & Wituszynski, David M. & Martin, Jay F. & Shah, Ajay, 2016. "Sustainability assessment of cellulosic biorefinery stillage utilization methods using emergy analysis," Energy, Elsevier, vol. 109(C), pages 13-28.
    2. Mirosław Wyszkowski & Natalia Kordala, 2024. "Effects of Humic Acids on Calorific Value and Chemical Composition of Maize Biomass in Iron-Contaminated Soil Phytostabilisation," Energies, MDPI, vol. 17(7), pages 1-19, April.
    3. René Morissette & Philippe Savoie & Joey Villeneuve, 2013. "Corn Stover and Wheat Straw Combustion in a 176-kW Boiler Adapted for Round Bales," Energies, MDPI, vol. 6(11), pages 1-15, November.
    4. Brojolall, Neeha & Surroop, Dinesh, 2022. "Improving fuel characteristics through torrefaction," Energy, Elsevier, vol. 246(C).
    5. Wei, Maogui & Zhu, Wanbin & Xie, Guanghui & Lestander, Torbjörn A. & Xiong, Shaojun, 2015. "Cassava stem wastes as potential feedstock for fuel ethanol production: A basic parameter study," Renewable Energy, Elsevier, vol. 83(C), pages 970-978.
    6. Edyta Boros-Lajszner & Jadwiga Wyszkowska & Jan Kucharski, 2024. "The Effect of Carpinus betulus Ash on the Maize as an Energy Crop and the Enzymatic Soil Properties," Energies, MDPI, vol. 17(12), pages 1-16, June.
    7. Tao, Guangcan & Lestander, Torbjörn A. & Geladi, Paul & Xiong, Shaojun, 2012. "Biomass properties in association with plant species and assortments I: A synthesis based on literature data of energy properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3481-3506.
    8. Jarosław Gocławski & Ewa Korzeniewska & Joanna Sekulska-Nalewajko & Paweł Kiełbasa & Tomasz Dróżdż, 2022. "Method of Biomass Discrimination for Fast Assessment of Calorific Value," Energies, MDPI, vol. 15(7), pages 1-23, March.
    9. Tao, Guangcan & Geladi, Paul & Lestander, Torbjörn A. & Xiong, Shaojun, 2012. "Biomass properties in association with plant species and assortments. II: A synthesis based on literature data for ash elements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3507-3522.
    10. Nizamuddin, Sabzoi & Baloch, Humair Ahmed & Griffin, G.J. & Mubarak, N.M. & Bhutto, Abdul Waheed & Abro, Rashid & Mazari, Shaukat Ali & Ali, Brahim Si, 2017. "An overview of effect of process parameters on hydrothermal carbonization of biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1289-1299.
    11. María E. Arce & Ángeles Saavedra & José L. Míguez & Enrique Granada & Antón Cacabelos, 2013. "Biomass Fuel and Combustion Conditions Selection in a Fixed Bed Combustor," Energies, MDPI, vol. 6(11), pages 1-17, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:8:y:2015:i:6:p:4827-4838:d:50145. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.