IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i9p3259-d805439.html
   My bibliography  Save this article

The Nuclear Magnetic Flowmeter for Monitoring the Consumption and Composition of Oil and Its Complex Mixtures in Real-Time

Author

Listed:
  • Roman Davydov

    (Institute of Physics and Mechanics, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia)

  • Vadim Davydov

    (Institute of Electronics and Telecommunications, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
    All Russian Research Institute of Phytopathology, 143050 Moscow, Russia)

  • Valentin Dudkin

    (Department of Photonics and Communication Lines, The Bonch-Bruevich Saint Petersburg State University of Telecommunication, 193232 St. Petersburg, Russia)

Abstract

The necessity of increasing the efficiency of primary oil purification in a drilling station or an offshore platform has been substantiated. We consider the problems that arise during the primary processing of oil mixtures. Important conditions for increasing the efficiency of primary purification (separation) of oil mixtures include measuring the consumption and determining the content of various impurities (water, undissolved particles) and air in them, with an error of no more than 2%. We analyzed the possibilities of using various designs of flowmeters to measure the consumption of the oil mixture coming from a well. It is also necessary to use other measuring instruments to control the state of this mixture, which creates additional problems (searching for an appropriate locations to place them, providing the required operating conditions). Various designs of nuclear magnetic flowmeters–relaxometers were considered, making it possible to measure the consumption of a liquid medium and its times of longitudinal T 1 and transverse T 2 relaxation with one device. The measured values of T 1 and T 2 determine the state of the medium. The design of the industrial nuclear magnetic flowmeter–relaxometer M-Phase 5000, which is used to control the flow and quality of oil and oil products, was considered in more detail. Problems were identified that did not allow using this design of a nuclear magnetic flowmeter–relaxometer in a drilling rig or offshore platform. A new design of a nuclear magnetic flowmeter–relaxometer was developed, implementing the methods for measuring q , T 1 , and T 2 . These methods and various technical solutions make it possible to use this device at a drilling station or offshore platform. The measurement errors of the consumption q , T 1 , and T 2 were determined. The results of various media studies are presented and compared with q , T 1 , and T 2 measurements on other devices and measured volume (to confirm the adequacy of q measurements). The application scopes of the developed nuclear magnetic flowmeter–relaxometer were determined, in addition to the systems of primary oil processing.

Suggested Citation

  • Roman Davydov & Vadim Davydov & Valentin Dudkin, 2022. "The Nuclear Magnetic Flowmeter for Monitoring the Consumption and Composition of Oil and Its Complex Mixtures in Real-Time," Energies, MDPI, vol. 15(9), pages 1-20, April.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3259-:d:805439
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/9/3259/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/9/3259/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Milana Treshcheva & Irina Anikina & Vitaly Sergeev & Sergey Skulkin & Dmitry Treshchev, 2021. "Selection of Heat Pump Capacity Used at Thermal Power Plants under Electricity Market Operating Conditions," Energies, MDPI, vol. 14(1), pages 1-25, January.
    2. Zhang, Shuai & Lei, Qingyu & Wu, Le & Wang, Yuqi & Zheng, Lan & Chen, Xi, 2022. "Supply chain design and integration for the Co-Processing of bio-oil and vacuum gas oil in a refinery," Energy, Elsevier, vol. 241(C).
    3. Yang Chen & Yao Zhang & Jianxue Wang & Zelong Lu, 2020. "Optimal Operation for Integrated Electricity–Heat System with Improved Heat Pump and Storage Model to Enhance Local Energy Utilization," Energies, MDPI, vol. 13(24), pages 1-23, December.
    4. Vitaly Sergeev & Irina Anikina & Konstantin Kalmykov, 2021. "Using Heat Pumps to Improve the Efficiency of Combined-Cycle Gas Turbines," Energies, MDPI, vol. 14(9), pages 1-26, May.
    5. Nascimento da Silva, Gabriela & Rochedo, Pedro R.R. & Szklo, Alexandre, 2022. "Renewable hydrogen production to deal with wind power surpluses and mitigate carbon dioxide emissions from oil refineries," Applied Energy, Elsevier, vol. 311(C).
    6. Liu, Qiang & Zhao, Zhongwei & Liu, Yiran & He, Yao, 2022. "Natural resources commodity prices volatility, economic performance and environment: Evaluating the role of oil rents," Resources Policy, Elsevier, vol. 76(C).
    7. Chen, Zhenbin & Wang, Li & Wei, Zhilong & Wang, Yu & Deng, Jiaojun, 2022. "Effect of components on the emulsification characteristic of glucose solution emulsified heavy fuel oil," Energy, Elsevier, vol. 244(PB).
    8. Nourelfath, Mustapha & Lababidi, Haitham M.S. & Aldowaisan, Tariq, 2022. "Socio-economic impacts of strategic oil and gas megaprojects: A case study in Kuwait," International Journal of Production Economics, Elsevier, vol. 246(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vasily Rud & Doulbay Melebaev & Viktor Krasnoshchekov & Ilya Ilyin & Eugeny Terukov & Maksim Diuldin & Alexey Andreev & Maral Shamuhammedowa & Vadim Davydov, 2023. "Photosensitivity of Nanostructured Schottky Barriers Based on GaP for Solar Energy Applications," Energies, MDPI, vol. 16(5), pages 1-15, February.
    2. Rustem Kashaev & Nguyen Duc Ahn & Valeriya Kozelkova & Oleg Kozelkov & Valentin Dudkin, 2023. "Online Multiphase Flow Measurement of Crude Oil Properties Using Nuclear (Proton) Magnetic Resonance Automated Measurement Complex for Energy Safety at Smart Oil Deposits," Energies, MDPI, vol. 16(3), pages 1-16, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rustem Kashaev & Nguyen Duc Ahn & Valeriya Kozelkova & Oleg Kozelkov & Valentin Dudkin, 2023. "Online Multiphase Flow Measurement of Crude Oil Properties Using Nuclear (Proton) Magnetic Resonance Automated Measurement Complex for Energy Safety at Smart Oil Deposits," Energies, MDPI, vol. 16(3), pages 1-16, January.
    2. Roman Davydov & Vadim Davydov & Nikita Myazin & Valentin Dudkin, 2022. "The Multifunctional Nuclear Magnetic Flowmeter for Control to the Consumption and Condition of Coolant in Nuclear Reactors," Energies, MDPI, vol. 15(5), pages 1-17, February.
    3. Vadim Davydov & Darya Vakorina & Daniil Provodin & Natalya Ryabogina & Gregory Stepanenkov, 2023. "New Method for State Express Control of Unstable Hydrocarbon Media and Their Mixtures," Energies, MDPI, vol. 16(6), pages 1-16, March.
    4. Milana Treshcheva & Irina Anikina & Dmitry Treshchev & Sergey Skulkin, 2022. "Heat Pump Capacity Selection for TPPs with Various Efficiency Levels," Energies, MDPI, vol. 15(12), pages 1-19, June.
    5. Bergman-Fonte, Clarissa & Nascimento da Silva, Gabriela & Império, Mariana & Draeger, Rebecca & Coutinho, Letícia & Cunha, Bruno S.L. & Rochedo, Pedro R.R. & Szklo, Alexandre & Schaeffer, Roberto, 2023. "Repurposing, co-processing and greenhouse gas mitigation – The Brazilian refining sector under deep decarbonization scenarios: A case study using integrated assessment modeling," Energy, Elsevier, vol. 282(C).
    6. Qin, Kang & Ye, Sishi & Wu, Le, 2024. "Process design and analysis of a net-zero carbon emissions hydrocracking unit integrating co-processing technique with green hydrogen and electricity," Energy, Elsevier, vol. 295(C).
    7. Aladejare, Samson Adeniyi, 2022. "Natural resource rents, globalisation and environmental degradation: New insight from 5 richest African economies," Resources Policy, Elsevier, vol. 78(C).
    8. Milana Treshcheva & Irina Anikina & Vitaly Sergeev & Sergey Skulkin & Dmitry Treshchev, 2021. "Selection of Heat Pump Capacity Used at Thermal Power Plants under Electricity Market Operating Conditions," Energies, MDPI, vol. 14(1), pages 1-25, January.
    9. Vitaly Sergeev & Irina Anikina & Konstantin Kalmykov, 2021. "Using Heat Pumps to Improve the Efficiency of Combined-Cycle Gas Turbines," Energies, MDPI, vol. 14(9), pages 1-26, May.
    10. Meng Qin & Hongfang Jiang & Lidong Pang & Chiwei Su, 2025. "Is Oil Really a Stumbling Block to Environmental Sustainability? From the Price Perspective," Sustainability, MDPI, vol. 17(5), pages 1-17, February.
    11. Halmat Omer & Murad Bein, 2022. "Does the Moderating Role of Financial Development on Energy Utilization Contributes to Environmental Sustainability in GCC Economies?," Energies, MDPI, vol. 15(13), pages 1-16, June.
    12. Bao, Jianhui & Lei, Jian & Tian, Guohong & Wang, Xiaomeng & Wang, Huaiyu & Shi, Cheng, 2024. "A review of the application development and key technologies of rotary engines under the background of carbon neutrality," Energy, Elsevier, vol. 311(C).
    13. Konstantin Kalmykov & Irina Anikina & Daria Kolbantseva & Milana Trescheva & Dmitriy Treschev & Aleksandr Kalyutik & Alena Aleshina & Iaroslav Vladimirov, 2022. "Use of Heat Pumps in the Hydrogen Production Cycle at Thermal Power Plants," Sustainability, MDPI, vol. 14(13), pages 1-18, June.
    14. Olayinka Oyekola & Lotanna E. Emediegwu & Jubril Olayinka Animashaun, 2023. "Commodity windfalls, political regimes, and environmental quality," Discussion Papers 2306, University of Exeter, Department of Economics.
    15. Patanjal Kumar & Sachin Kumar Mangla & Yigit Kazancoglu & Ali Emrouznejad, 2023. "A decision framework for incorporating the coordination and behavioural issues in sustainable supply chains in digital economy," Annals of Operations Research, Springer, vol. 326(2), pages 721-749, July.
    16. Gomez-Gonzalez, Jose E. & Uribe, Jorge M. & Valencia, Oscar M., 2023. "Does economic complexity reduce the probability of a fiscal crisis?," World Development, Elsevier, vol. 168(C).
    17. Zhang, Yi & Zhang, Leilei & Yu, Hang & Tu, Yanhong, 2023. "Does Geopolitical risk drive natural resources extraction globally? A Case of Global," Resources Policy, Elsevier, vol. 82(C).
    18. Jaime Menéndez-Sánchez & Jorge Fernández-Gómez & Andrés Araujo-de-la-Mata, 2023. "Sustainability Strategies by Oil and Gas Companies, Contribution to the SDGs and Local Innovation Ecosystems," Energies, MDPI, vol. 16(6), pages 1-19, March.
    19. Anzhelika Pirmamedovna Karaeva & Elena Romenovna Magaril & Andrey Vladimirovich Kiselev & Lucian-Ionel Cioca, 2022. "Screening of Factors for Assessing the Environmental and Economic Efficiency of Investment Projects in the Energy Sector," IJERPH, MDPI, vol. 19(18), pages 1-21, September.
    20. Oyekola, Olayinka & Emediegwu, Lotanna E. & Animashaun, Jubril O., 2024. "Commodity windfalls, political regimes, and environmental quality," Energy Economics, Elsevier, vol. 138(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3259-:d:805439. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.